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Preface

Induction motors are the most important workhorses in industry and they are manufactured in

large numbers. About half of the electrical energy generated in a developed country is

ultimately consumed by electric motors, of which over 90% are induction motors. For a

relatively long period, induction motors have mainly been deployed in constant-speed motor

drives for general purpose applications. The rapid development of power electronic devices and

converter technologies in the past few decades, however, has made possible efficient speed

control by varying the supply frequency, giving rise to various forms of adjustable-speed

induction motor drives. In about the same period, there were also advances in control methods

and artificial intelligence (AI) techniques, including expert system, fuzzy logic, neural

networks and genetic algorithm. Researchers soon realized that the performance of induction

motor drives can be enhanced by adopting artificial-intelligence-based methods. Since the

1990s, AI-based induction motor drives have received greater attention and numerous

technical papers have been published. Speed-sensorless induction drives have also emerged

as an important branch of induction motor research. A few good reference books on intelligent

control and power electronic drives were written. Some electric drive manufacturers began to

incorporate AI-control in their commercial products.

This book aims to explore possible areas of induction motor control that require further

investigation and development and focuses on the application of intelligent control principles

and algorithms in order to make the controller independent of, or less sensitive to, motor

parameter changes. Intelligent control is becoming an important and necessarymethod to solve

difficult problems in control of induction motor drives. Based on classical electrical machine

and control theory, the authors have investigated the applications of expert-system control,

fuzzy-logic control, neural-network control, and genetic algorithm to various forms of

induction motor drive.

This book is the result of over fifteen years of research on intelligent control of induction

motors undertaken by the authors at the Department of Electrical Engineering, the Hong Kong

Polytechnic University and the United States. The methods are original and most of the work

has been published in IEEE Transactions and international conferences. In the past few years,

our publications have been increasingly cited by Science Citation Index journal papers,

showing that our work is being rigorously followed up by the induction motor drives research

community.

We believe that the publication of a book or monograph summarizing our latest research

findings on intelligent control will benefit the research community. This bookwill complement
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some of the fine references written by eminent electric drives and power electronic experts

(such as Peter Vas, Bimal Bose, andDote andHoft, to name just a few), and at the same time the

presentation will enable researchers to explore new research directions. Numerous examples,

block diagrams, and simulation programs are provided for interested readers to conduct related

investigations.

This book adopts a practical simulation approach that enables interested readers to embark

on research in intelligent control of electric driveswith theminimumeffort and time. Intelligent

control techniques have to be used in practical applications where controller designs involve

noise distribution (Kalman filter), pseudo-random data (random PWM), inference similar to

human, system identification, and lookup table identification. Artificial intelligence techniques

are presented in the context of the drive applications being considered and a strong link between

AI and the induction motor drive is established throughout the chapters. The numerous

simulation examples and results presented will shed new light on possible future induction

motor drives research.

There are twelve chapters in this book. Chapter 1 gives an overview of induction motor

drives and reviews previous work in this important technical area. Chapter 2 presents the

philosophy of induction motor control. From the classical induction motor model, the

differential equations are formulated that fit in a generic control framework. Various control

schemes are then discussed, followed by the development of general control algorithms.

Modeling and simulation of inductionmotors are discussed inChapter 3with the aid of detailed

MATLAB�/Simulink block diagrams.

Chapter 4 is a primer for simulation of intelligent control systems using MATLAB�/

Simulink. Programming examples of fuzzy-logic, neural network, Kalman filter, and genetic

algorithm are provided to familiarize readers with simulation programming involving intelli-

gent techniques. The exercises will fast guide them into the intelligent control area. These

models and simulation techniques form the basis of the intelligent control applications

discussed in Chapters 5–10 which cover, in this order, expert-system-based acceleration

control, hybrid fuzzy/PI two-stage control, neural-network-based direct self control, parameter

estimation using neural networks, GA-optimized extended Kalman filter for speed estimation,

and optimized random PWM strategy based on genetic algorithms.

In Chapter 5, an expert-system-based acceleration controller is developed to overcome the

three drawbacks (sensitivity to parameter variations, error accumulation, and the needs for

continuous control with initial state) of the vector controller. In every time interval of the

control process, the acceleration increments produced by two different voltage vectors are

compared, yielding one optimum stator voltage vector which is selected and retained. The on-

line inference control is built using an expert system with heuristic knowledge about the

relationship between the motor voltage and acceleration. Because integral calculation and

motor parameters are not involved, the new controller has no accumulation error of integral as

in the conventional vector control schemes and the same controller can be used for different

induction motors without modification. Simulation results obtained on the expert-system-

based controller show that the performance is comparablewith that of a conventional direct self

controller, hence proving the feasibility of expert-system-based control.

In Chapter 6, a hybrid fuzzy/PI two-stage control method is developed to optimize the

dynamic performance of a current and slip frequency controller. Based on two features (current

magnitude feature and slip frequency feature) of the field orientation principle, the authors

apply different strategies to control the rotor speed during the acceleration stage and the steady-

xiv Preface
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state stage. The performance of the two-stage controller approximates that of a field-oriented

controller. Besides, the new controller has the advantages of simplicity and insensitivity to

motor parameter changes. Very encouraging results are obtained from a computer simulation

using MATLAB�/Simulink software and a DSP-based experiment.

In Chapter 7, implementation of direct self control for an induction motor drive using

artificial neural network (ANN) is discussed. ANN has the advantages of parallel computation

and simple hardware, hence it is superior to a DSP-based controller in execution time and

structure. In order to improve the performance of a direct self controller, an ANN-based DSC

with seven layers of neurons is proposed at algorithm level. The execution time is decreased

from 250ms (for a DSP-based controller) to 21ms (for the ANN-based controller), hence the

torque and flux errors caused by long execution times are almost eliminated. A detailed

simulation study is performed using MATLAB�/Simulink and Neural-network Toolbox.

Machine parameter estimation is important for field-oriented control (FOC) and sensorless

control. Most parameter estimation methods are based on differential equations of the

induction motor. Differential operators, however, will cause noise and greatly reduce the

estimation precision. Nondifferentiable points will also exist in the motor currents due to rapid

turn-on or turn-off of the ideal power electronic switches. Chapter 8 addresses the issue of

parameter uncertainties of induction motors and presents a neural-network-based parameter

estimation method using an integral model. By using the proposed ANN-based integral

models, almost all the machine parameters can be derived directly from the measured data,

namely the stator currents, stator voltages and rotor speed.With the estimated parameters, load,

stator flux, and rotor speed may be estimated.

Addressing the current research trend, a speed-sensorless controller using an extended

Kalman filter (EKF) is investigated in Chapter 9. To improve the performance of the speed-

sensorless controller, noise covariance andweightmatrices of theEKFare optimized by using a

real-coded genetic algorithm (GA). MATLAB�/Simulink based simulation and DSP-based

experimental results are presented to confirm the efficacy of the GA-optimized EKF for speed

estimation in an induction motor drive.

Chapter 10 is devoted to optimized random pulse-width modulation (PWM) strategies. The

optimized PWM inverter can spread harmonic energy and reduce total harmonic distortion,

weighted total harmonic distortion, or distortion factor. Without incurring extra hardware cost

and programming complexity, the optimized PWM is implemented by writing an optimized

carrier sequence into the PWM controller in place of the conventional carrier generator.

Comparison between simulation and experimental results verifies that output voltage of the

optimized PWM technique is superior to that based on the standard triangular PWM and

random PWM methods. A real-valued genetic algorithm is employed for implementing the

optimization strategy.

Chapter 11 describes the details of the experimental system and presents the experiments and

experimental results. At the hardware level, an experimental system for the intelligent control

of inductionmotor drive is proposed. The system is configured by a DSP (ADMC331), a power

module (IRPT1058A), a three-phase Hall-effect current sensor, an encoder (Model GBZ02), a

data acquisition card (PCL818HG), a PC host and a data-acquisition PC, as well as a 147W

three-phase induction motor. With the experimental hardware, the MATLAB�/Simulink

models, hybrid fuzzy/PI two-stage control algorithm, and GA-EKF method proposed in this

book have beenverified. It is proposed to useDSPTMS320F28335 for intelligent controlwith a

real time data exchange (RTDX) technique. Many intelligent algorithms are complex and with

Preface xv
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larger data block (such as GA and Neural Network) which cannot be written into a DSP chip.

With the RTDX technique, hardware-in-the-loop training and simulation may be implemented

in the laboratory environment. TheRTDXexamples of DSP target C programming and PC host

MATLAB� programming are provided.

Chapter 12 gives some conclusions and explores possible new developments of AI

applications to induction motor drives.

This bookwill be useful to academics and students (senior undergraduate, postgraduate, and

PhD)who specialize in electricmotor drives in general and inductionmotor drives in particular.

The readers are assumed to have a good foundation on electricalmachines (including reference

frame theory and transformation techniques), control theory, and basics of artificial intelli-

gence (such as expert systems, fuzzy logic theory, neural networks, and genetic algorithms).

The book is at an advanced level, but senior undergraduate students specializing on electric

motor drives projects should also find it a good reference. It also provides a practical guide to

research students to get started with hardware implementation of intelligent control of

induction motor drives.

Tze-Fun Chan and Keli Shi

March 2010
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1

Introduction

1.1 Induction Motor

Conversion from electrical energy to mechanical energy is an important process in modern

industrial civilization. About half of the electricity generated in a developed country is

eventually converted to mechanical energy, usually by means of electrical machines

(Leonhard, 1996; Sen, 1997).

Typical applications of electrical machine drives are:

1. Appliances (washing machines, blowers, compressors, pumps);

2. Heating/ventilation/air conditioning (HVAC);

3. Industrial servo drives (motion control, robotics);

4. Automotive control (electric vehicles).

Since its invention in 1888, the induction motor has become the most widely used motor in

industry. Compared with d.c. motors, the cage induction motor has distinct advantages

(Novotny and Lipo, 1996) as listed below:

1. No commutator and brushes,

2. Ruggedness,

3. Lower rotor inertia,

4. Maintenance free, simpler protection,

5. Smaller size and weight,

6. Lower price.

Consequently, most industrial drive applications employ induction motors. Unfortunately,

the speed of an induction motor cannot be continuously varied without additional

expensive equipment. High-performance control of an induction motor is more difficult than

d.c. motors, because the induction motor is inherently a dynamic, recurrent, and nonlinear

system.
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1.2 Induction Motor Control

Induction motor control problems have attracted the attention of researchers for many years.

Most of the earlier researches are based on classical control theory and electricmachine theory,

using precise mathematical models of the induction motor. As shown in Figure 1.1, an

induction motor control system consists of the controller, sensors, inverter, and the induction

motor. It can be seen that a study of induction motor control involves three main electrical

engineering areas: control, power electronics, and electrical machines (Bose, 1981).

The induction motor can be described by a fifth order nonlinear differential equation with

two inputs and only three state variables are available for measurement (Marino and

Tomei, 1995). The control task is further complicated by the fact that the induction motor

is subject to unpredictable disturbances (such as noise and load changes) and there are

uncertainties in machine parameters. Induction motor control has constituted a theoretically

interesting and practically important class of nonlinear systems, and is evolving into a

benchmark example for nonlinear control (Ortega and Asher, 1998).

Intelligent control, which includes expert-system control, fuzzy-logic control, neural-

network control, and genetic algorithm, is not only based on artificial intelligence (AI) theory,

but also based on conventional control theory. Consequently, new control methods can be

developed by the application of artificial intelligence (Bose, 1993).

1.3 Review of Previous Work

Scientists and experts have devoted a lot of efforts to induction motor control in the past

decades. Developing new control principle, algorithm, and hardware for induction motor

control has become a challenge that industry must face today. The development of induction

motor control may be summarized as follows.

In 1946, Weygandt and Charp investigated the transient performance of induction motor by

using an analog computer (Weygandt and Charp, 1946).

In1956,BellLaboratories invented the thyristor (or silicon-controlled rectifier) (Bose, 1989).

In 1959, Kovacs and Racz applied rotating reference frames and space vectors to the study of

induction motor transients (Kovacs and Racz, 1959).

Since 1960, various scalar control strategies of constant voltage/frequency (V/Hz) control of

induction motor had been proposed (Bose, 1981).

In 1961, McMurray and Shattuck proposed the inverter circuit with pulse width modulation

(PWM) (McMurray and Slattuck, 1961).

Controller Inverter IM

Voltage and
current sensors  

Speed or 
position sensors 

Commands 

Load 

Power
supply  

Figure 1.1 An induction motor control system.
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In 1968 and in 1970, field orientation principle was first formulated by Hasse and Blaschke

(Hasse, 1969; Blashke, 1972).

In 1985, direct self control was proposed by M. Depenbrock, I. Takahashi, and T. Noguchi

(Depenbrock, 1985; Takahashi and Noguchi, 1986).

In the 1990s, intelligent control of induction motor received wide attention (Bose, 1992).

Recently, revolutionary advances in computer technology, power electronics, modern

control, and artificial intelligence have led to a new generation of induction motor control

that may provide significant economic benefits.

The voltage or current supplied to an induction motor can be expressed as a sinusoidal

function of magnitude and frequency or magnitude and phase. Accordingly, induction motor

control methods are classified into two categories: scalar control in which the voltage

magnitude and frequency are adjusted, and vector control in which the voltage magnitude

and phase are adjusted.

1.3.1 Scalar Control

The scalar controllers are usually used in low-cost and low-performance drives. They control

the magnitude/frequency of voltage or current. Typical studies of scalar control include open-

loop voltage/frequency (V/Hz) control, closed-loop V/Hz control, and stator current and slip-

frequency control (Bose, 1981).

When the load torque is constant and there are no stringent requirements on speed regulation,

it suffices to use a variable-frequency induction motor drive with open-loop V/Hz control.

Applications which require only a gradual change in speed are being replaced by open-loop

controllers, often referred to as general purpose AC drives (Rajashekara, Kawamura, and

Matsuse, 1996).

When the drive requirements include faster dynamic response and more accurate

speed or torque control, it is necessary to operate the motor in the closed-loop mode.

Closed-loop scalar control includes closed-loop V/Hz control and stator current and slip

frequency control.

1.3.2 Vector Control (Rajashekara, Kawamura, and Matsuse, 1996)

The vector controllers are expensive and high-performance drives, which aim to control the

magnitude and phase of voltage or current vectors. Vector control methods include field-

oriented control (FOC) and direct self control (DSC). Both methods attempt to reduce the

complex nonlinear control structure into a linear one, a process that involves the evaluation of

definite integrals. FOC uses the definite integral to obtain the rotor flux angle, whereas DSC

uses the definite integral to obtain the stator flux space vector. Although the implementation of

both methods has largely been successful, they suffer from the following drawbacks:

1. Sensitivity to parameter variations;

2. Error accumulation when evaluating the definite integrals; if the control time is long,

degradation in the steady-state and transient responses will result due to drift in parameter

values and excessive error accumulation;

3. In both methods, the control must be continuous and the calculation must begin from an

initial state.
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1.3.3 Speed Sensorless Control

Speed sensorless control of induction motors is a new and promising research trend. To

eliminate the speed and position sensors, many speed and position estimation algorithms

have been proposed recently. These algorithms are generally based on complex calculations

which involve the machine parameters and the measurement of terminal voltages and

currents of the induction motor. Speed sensorless control can be regarded as open-loop

control because the measurement is included in the controller (Rajashekara, Kawamura, and

Matsuse, 1996).

1.3.4 Intelligent Control of Induction Motor

Despite the great efforts devoted to induction motor control, many of the theoretical results

cannot be directly applied to practical systems. The difficulties that arise in induction motor

control are complex computations, model nonlinearity, and uncertainties in machine para-

meters. Recently, intelligent techniques are introduced in order to overcome these difficulties.

Intelligent control methodology uses human motivated techniques and procedures (for

example, forms of knowledge representation or decision making) for system control

(Bose, 1997; Narendra and Mukhopadhyay, 1996).

1.3.5 Application Status and Research Trends of Induction Motor Control

Among the above control techniques, market evidence shows that up to the present only two

have found general acceptance. They are the open-loop constant V/Hz control for low-

performance applications and the indirect vector control for high-performance applications

(Bose, 1993). Vector control principle, intelligent-based algorithm, and DSP-based hardware

represent recent research trends of induction motor control.

1.4 Present Study

The present research status of induction motor control suggests the areas that require further

investigation and development. The objective of this book is to investigate intelligent control

principles and algorithms in order to make the performance of the controller independent of, or

less sensitive to, motor parameter changes. Based on theories of the induction motor and

control principles, expert-system control, fuzzy-logic control, neural-network control, and

genetic algorithm for induction motor drive will be investigated and developed. The scope of

the present book is summarized as follows:

1. Computer modeling of induction motor

The induction motor model typically consists of an electrical model and a mechanical

model, which is a fifth-order nonlinear system. UsingMATLAB�/Simulink software, three

induction motor models (current-input model, voltage-input model, discrete-state model)

are constructed for the simulation studies of the inductionmotor drive. The threemodels can

be used to simulate the actual induction motor effectively. In addition, a PWM model, an

encoder model, and a decoder model are also proposed.
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2. Expert-system based acceleration control

An expert-system based acceleration controller is developed to overcome the drawbacks

(sensitivity to parameter variations, error accumulation, and the needs for continuous

control with initial state) of the vector controller. In every time interval of the control

process, the acceleration increments produced by two different voltage vectors are

compared, yielding one optimum stator voltage vector which is selected and retained.

The on-line inference control is built using an expert systemwith heuristic knowledge about

the relationship between the motor voltage and acceleration. Because integral calculation

and motor parameters are not involved, the new controller has no accumulation error of

integral as in the conventional vector control schemes and the same controller can be used

for different induction motors without modification. Simulation results obtained on the

expert-system based controller show that the performance is comparable with that of a

conventional direct self controller, hence proving the feasibility of expert-system based

control.

3. Hybrid fuzzy/PI two-stage control

A hybrid fuzzy/PI two-stage control method is developed to optimize the dynamic

performance of a current and slip frequency controller. Based on two features (current

magnitude feature and slip frequency feature) of the field orientation principle, different

strategies are proposed to control the rotor speed during the acceleration stage and the

steady-state stage. The performance of the two-stage controller approximates that of a field-

oriented controller. Besides, the new controller has the advantages of simplicity and

insensitivity to motor parameter changes. Very encouraging results are obtained from a

computer simulation using MATLAB�/Simulink software and experimental verification

using a DSP-based drive.

4. Neural-network-based direct self control (DSC)

Artificial neural network (ANN) has the advantages of parallel computation and simple

hardware, hence it is superior to a DSP-based controller in execution time and structure. In

order to improve the performance of a direct self controller, an ANN-based DSCwith seven

layers of neurons is proposed at algorithm level. The execution time is decreased from

250 ms (for a DSP-based controller) to 21ms (for the ANN-based controller), hence the

torque and flux errors caused by long execution times are almost eliminated. A detailed

simulation study is performed using MATLAB�/Simulink and Neural-network Toolbox.

5. Genetic algorithm based extended Kalman filter for rotor speed estimation of

induction motor

Addressing the current research trend, speed-sensorless controller with the extended

Kalman filter is investigated. To improve the performance of the speed-sensorless

controller, noise covariance and weight matrices of the extended Kalman filter are

optimized by using a real-coded genetic algorithm (GA). MATLAB�/Simulink-based

simulation and DSP-based experimental results are presented to confirm the efficacy of

the GA-optimized EKF for speed estimation in induction motor drives.

6. Parameter estimation using neural networks

Integral models of an induction motor are described and implemented by using an artificial

neural network (ANN) approach. By using the proposed ANN-based integral models,

almost all the machine parameters can be derived directly from the measured data, namely

the stator currents, stator voltages and rotor speed. With the estimated parameters, load,

stator flux, and rotor speed may be estimated for induction motor control.
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7. Optimized random PWM strategies based on genetic algorithm

Random carrier-frequency PWM, random pulse-position PWM, random pulse-width

PWM, and hybrid random pulse-position and pulse-width PWM are optimized by genetic

algorithm (GA). A single-phase inverter is employed for the optimization study, and

the resulting waveforms are evaluated based on Fourier analysis. The validity of the

GA-optimized random carrier-frequency PWM is verified by experimental studies on a

DSP-based voltage controlled inverter. The GA-optimized PWM proposed may be applied

to single-phase ac inductionmotor drives for low performance applications, such as pumps,

fans and mixers, as well as uninterruptible power supply (UPS).

8. Hardware experiments

At the hardware level, an experimental system for intelligent control of an induction

motor is proposed and implemented. The system is configured by a DSP (ADMC331), a

power module (IRPT1058A), a three-phase Hall-effect current sensor, an encoder

(Model GBZ02), a data acquisition card (PCL818HG), a PC host and a data-acquisition

PC, as well as a 147-W 3-phase induction motor. With the experimental hardware,

the MATLAB�/Simulink models, hybrid fuzzy/PI two-stage control algorithm, and

GA-EKF method described in this book are verified. Using a TMS320F2812 DSP board

and an IRAMX16UP60A inverter module, a GA-optimized single-phase random-

carrier-frequency PWM inverter is implemented. Besides, programming examples are

presented to demonstrate RTDX (Real Time Data exchange) technique to exchange

real-time data between a TMS320F28335 DSP and MATLAB� software. With the RTDX

technique, real-time DSP applications can be supported by a complex MATLAB� AI

program running simultaneously on a PC.

9. Programming examples

Using MATLAB�/Simulink software and CCStudio_v3.3 software, a large number of

programming examples are described in the book and the source codes can be found on the

book companion website as supplementary materials. The programming examples may be

classified into the following categories.

a. Modeling and simulation of induction motor (Chapter 3)

b. Fundamentals of intelligent control simulation (Chapter 4)

c. Induction motor control

Expert-system based acceleration control (Chapter 5)

Hybrid fuzzy/PI two-stage control (Chapter 6)

Direct self control of induction motor (Chapter 7)

Neural-network based direct self control (Chapter 7)

Field-oriented control of induction motor (Chapter 8)

Voltage-frequency controlled induction motor drive (Chapter 9).

d. Estimations for induction motor drives

Parameter estimation using neural networks (Chapter 8)

Load estimation based on integral model of induction motor (Chapter 8)

Flux estimation based on integral model of induction motor (Chapter 8)

Rotor speed estimation based on integral model of induction motor (Chapter 8)

GA-optimized extended Kalman filter for speed estimation (Chapter 9).

e. Sensorless control of induction motor

Integral-model-based sensorless control of induction motor (Chapter 8)
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EKF-based sensorless V/Hz control of induction motor (Chapter 9)

EKF-based sensorless field-oriented control (FOC) of induction motor (Chapter 9).

f. PWM strategies

Space vector PWM Simulink model (in the folder ‘Chapter 8.4’ of the book companion

website)

Optimized random PWM strategy based on genetic algorithms (Chapter 10).

g. DSP TMS320F28335 programming examples

3-phase PWM programming example (Chapter 11)

RTDX programming example (Chapter 11)

ADC programming example (Chapter 11)

CAP programming example (Chapter 11).
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2

Philosophy of Induction
Motor Control

2.1 Introduction

Strong demands for high-performance motor drives in industry have stimulated the research

on induction motor control. Despite the great effort devoted to this research area for many

years, the desired performance in inductionmotor drives has not been achieved satisfactorily.

In the 1970s, nonlinear controllability and observability began to be studied using differential

geometric tools (Marino and Tomei, 1995), while the field-oriented controller was introduced

in 1968 and 1970 on the basis of themathematicalmodel of the inductionmotor (Hasse, 1969;

Blashke, 1972). Field-oriented control has the innovative feature that, based on the reference

frame theory (proposed by R.H. Park in the late 1920s) (Krause, Wasynczuk, and Sudhoff,

1995), it makes use of nonlinear transformation of stator coordinates and of nonlinear state

feedback (which aims at nonlinearity cancellation) to make the closed-loop system linear in

the new coordinates. A theory of nonlinear feedback control design was developed during

the 1980s (Marino and Tomei, 1995) and in 1985 direct self control was proposed

(Depenbrock, 1985). In the direct self control scheme, the errors in the torque and flux are

directly used to choose the inverter switching state with the hysteresis (or bang-bang) control

strategy. Recently, inductionmotor control has involvedmore andmore subject areas, such as

modern nonlinear control, electrical machine, artificial intelligence, power electronics,

signal processing, and computer science (Bose, 1993). Many research papers in this area

have been published, and it is clear that the development of a new controller cannot be

implemented briefly and in a single step. Consequently, the understanding and design of the

controller should be made at theory, algorithm, and hardware levels to facilitate analysis and

system realization.
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2.2 Induction Motor Control Theory

2.2.1 Nonlinear Feedback Control

Modern control design is fundamentally a time-domain technique. A state-space model of the

system to be controlled, or plant, is required (Marino and Tomei, 1995). A commonly used

model for a nonlinear system is (Vidyasagar, 1993):

_xðtÞ ¼ f ðt; xðtÞ; uðtÞÞ; xð0Þ ¼ x0 ð2:1Þ

yðtÞ ¼ hðt; xðtÞÞ ð2:2Þ

where t denotes time, x0 is the initial condition, x(t) denotes the value of the function x(.) at

time t and is an n-dimensional vector, u(t) is similarly defined and is anm-dimensional vector,

and the function f associates, with each value of t,x(t), and u(t), a corresponding n-dimensional

vector. Following common convention, this is denoted as: t2Rþ , x(t)2Rn, u(t)2Rm, and f:

Rþ �Rn�Rm ! sRn. The quantity x(t), which is a vector of internal variables, is referred

to as the state of the system at time t, while u(t) is called the control function. yðtÞ 2 Rs is

a vector of measured outputs. When m¼ s¼ 1, we speak of single-input single-output

(SISO) systems; we speak of multiple-input multiple-output (MIMO) systems when either

m > 1 and s > 1.

If we define

vðtÞ ¼ qðxðtÞÞþ sðxðtÞÞuðtÞ ð2:3Þ

then the resulting variables y(t) and v(t) satisfy a linear differential equation of the form:

_yðtÞ ¼ E1yðtÞþE2vðtÞ ð2:4Þ

where the pair (E1, E2) is controllable. If this is the case, then the system represented by

Equation (2.1) is said to be feedback linearizable. Note that since sðxðtÞÞ 6¼ 0 in some

neighborhood of zero, Equation (2.3) can be rewritten as:

uðtÞ ¼ � qðxðtÞÞ
sðxðtÞÞ þ 1

sðxðtÞÞ vðtÞ ð2:5Þ

where �q(x(t))/s(x(t)) and 1/s(x(t)) are smooth functions.

Hence, if we think of v(t) as the external reference input applied to the system, then

Equation (2.3) or Equation (2.5) represents nonlinear state feedback, and a nonlinear state-

dependent pre-filter, applied to the system Equation (2.1). Similarly, Equation (2.2) represents

a nonlinear state-variable transformation. Feedback signals are a function of system state

variables. Hence, a state feedback control system with the overall effects Equations (2.2)

and (2.3) can be represented by Figure 2.1.
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In inductionmotor drives, the relationship between the rotor speed and the power input is not

linear. In a vector control scheme, only three state variables (speed and currents in two phases)

and two inputs (voltages) are available for measurement, hence the other two state variables

(fluxes) have to be estimated. Using the state variablesmeasured or estimated, feedback signals

can be calculated by the vector controller. Consequently, the complex nonlinear control

structure can be transformed into a linear one.

2.2.2 Induction Motor Models

An induction motor model based on a ‘G’ equivalent circuit (Appendix A) in the stator

reference frame may be expressed as a fifth-order nonlinear equation (Trzynadlowski, 1994):

doo

dt
¼ 2

3

P

2J
ðlsdmisqs�lsqmi

s
dsÞ�

TL

J

dlsdm
dt

¼ �Rsi
s
ds þVs

ds

dlsqm
dt

¼ �Rsi
s
qs þVs

qs

disds
dt

¼ �kGðLmRR þ LRRsÞisds þ
P

2
ooi

s
qs þ kGRRl

s
dm þ

P

2
kGool

s
qm þ kGLRV

s
ds

disqs

dt
¼ �kGðLmRR þ LRRsÞisqs�

P

2
ooi

s
ds þ kGRRl

s
qm�

P

2
kGool

s
dm þ kGLRV

s
qs

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

ð2:6Þ

where kG ¼ 1
L2m�LmLR

, and electromagnetic torque T ¼ 2
3
P
2

lsdmi
s
qs�lsqmi

s
ds

� �
.

In Equation (2.6), rotor speedoo, stator fluxes ðlsdm; lsqmÞ, and stator currents ðisds; isqsÞ are the
states, while rotor inertia J, stator and rotor inductances (Lm, LR), stator and rotor resistances

(Rs,RR), and the number of polesP are the parameters. Thevoltages ðVs
ds;V

s
qsÞ are inputs, andTL

is the load torque.

v

+
-

1
s(x(t))

q(x)

x y
x = f(t,x(t),u(t))
.

h(t,x(t))
u

Reference
input  

Control
function  Output  State  

PLANT

feedback
signal  

Figure 2.1 A state feedback control system.
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Let lsm ¼ lsdm þ jlsqm, l
s
R ¼ lsdR þ jlsqR, i

s
s ¼ isds þ jisqs, and i

s
R ¼ isdR þ jisqR. The flux equations

can be written as:

lsm ¼ Lmi
s
s þ Lmi

s
R ð2:7Þ

lsR ¼ lsm þ LRi
s
R: ð2:8Þ

From Equations (2.7) and (2.8), the following equations can be derived.

iss ¼
lsm
Lm

�isR ð2:9Þ

iss ¼
LR þ Lm

LmLR
lsm�

1

LR
lsR ð2:10Þ

lsm ¼ Lm

LR þ Lm
lsR þ

LmLR

LR þ Lm
iss ð2:11Þ

lsm ¼ lsR�LRi
s
R ð2:12Þ

iss ¼
lsR
Lm

� 1þ LR

Lm

� �
isR ð2:13Þ

For convenience, Equation (2.6) is referred to as the 1st fifth-order equation.

Substituting Equation (2.7) into Equation (2.6), the 2nd fifth-order equation is obtained.

Substituting Equation (2.9) into Equation (2.6), the 3rd fifth-order equation is obtained.

Substituting Equation (2.10) into Equation (2.6), the 4th fifth-order equation is obtained.

Substituting Equation (2.11) into Equation (2.6), the 5th fifth-order equation is obtained.

Substituting Equations (2.12) and (2.13) into Equation (2.6), the 6th fifth-order equation is

obtained.

The six fifth-order equations are listed as follows:

1st equation: with state variables flsdm; lsqm; isds; isqs;oog.
2nd equation: with state variables fisds; isqs; isdR; isqR;oog.
3rd equation: with state variables flsdm; lsqm; isdR; isqR;oog.
4th equation: with state variables flsdR; lsqR; lsdm; lsqm;oog.
5th equation: with state variables flsdR; lsqR; isds; isqs;oog.
6th equation: with state variables flsdR; lsqR; isdR; isqR;oog.
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An induction motor ‘T’ equivalent circuit model (Appendix A) can be expressed as another

fifth-order nonlinear equation in the stator reference frame (Trzynadlowski, 1994):

doo

dt
¼ 2

3

PLM

2JLr
lsdri

s
qs�lsqri

s
ds

� �
�TL

J

dlsdr
dt

¼�Rr

Lr
lsdr�

P

2
ool

s
qrþ

RrLM

Lr
isds

dlsqr
dt

¼�Rr

Lr
lsqrþ

P

2
ool

s
drþ

RrLM

Lr
isqs

disds
dt

¼ LMRr

LrLs�L2Mð ÞLr l
s
drþ

PLM

2 LrLs�L2Mð Þool
s
qr�

L2M RrþL2r Rs

LrLs�L2Mð ÞLr i
s
dsþ

Lr

LrLs�L2Mð ÞV
s
ds

disqs

dt
¼ LMRr

LrLs�L2Mð ÞLr l
s
qr�

PLM

2 LrLs�L2Mð Þool
s
dr�

LM
2RrþL2rRs

LrLs�L2Mð ÞLr i
s
qsþ

Lr

LrLs�L2Mð ÞV
s
qs

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

ð2:14Þ

In Equation (2.14), rotor speedoo, rotor fluxes ðlsdr; lsqrÞ, and stator currents ðisds; isqsÞ are the
states, while rotor inertia J, stator and rotor inductances (Ls, Lr), mutual inductance LM, stator

and rotor resistances (Rs, Rr), and the number of poles P are the parameters. The voltages

ðVs
ds;V

s
qsÞ are inputs, and TL is the load torque.

From the ‘T’ equivalent circuit, another six fifth-order equations with different state

variables can be obtained:

7th equation: with state variables flsdM; lsqM; isds; isqs;oog.
8th equation: with state variables fisds; isqs; isdr; isqr;oog.
9th equation: with state variables flsdM; lsqM; isdr; isqr;oog.
10th equation: with state variables flsdr; lsqr; lsdM; lsqM;oog.
11th equation: with state variables flsdr; lsqr; isds; isqs;oog.
12th equation: with state variables flsdr; lsqr; isdr; isqr;oog.

The twelve fifth-order equations illustrate the major difficulty encountered in the control of

induction motors. For example, in Equations (2.6) and (2.14), the multiplier operators of states

render the induction motor becoming a nonlinear system (Trzynadlowski, 1994), while

the differential operations give rise to a dynamic system (Delgado, Kambhampati, and

Warwick, 1995). The system output speed oo is used to calculate the system variables, which

makes the motor a recurrent system (Kung, 1993). In addition, local recurrent calculations are

involved in Equation (2.6). For example, the term ieds appears on both sides of the current

equation. Consequently, the induction motor can be referred to as a dynamic, recurrent, and

nonlinear system.

2.2.3 Field-Oriented Control

When the stator currents are controlled, the last two equations in Equation (2.14) (the 11th fifth-

order equation) are neglected. Using the substitution or¼o� (P/2)oo, the reduced-order
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equation in the excitation reference-frame can be expressed as (Trzynadlowski, 1994):

doo

dt
¼ 2

3

PLM

2JLr
ledri

e
qs�leqri

e
ds

� �
� TL

J

dledr
dt

¼ �Rr

Lr
ledr þorl

e
qr þ

Rr

Lr
LMi

e
ds

dleqr
dt

¼ �Rr

Lr
leqr�orl

e
dr þ

Rr

Lr
LMi

e
qs

8>>>>>>>>><
>>>>>>>>>:

ð2:15Þ

Based on Equation (2.15), the classical field-oriented control and the recent nonlinear input-

output decoupled control have been proposed (Chan, Leung, and Ng, 1990).

The field-orientation conditions can be expressed as (Trzynadlowski, 1994):

leqr ¼ 0

ledr ¼ constant

Replacing T and ledr with T� and ledr
� respectively and substituting the field orientation

conditions into Equation (2.15) with T ¼ PLM
3Lr

ledri
e
qs, an indirect FOC scheme for an induction

motor can be derived as follows:

ieds ¼
dledr*
dt

Lr

LMRr

þ 1

LM
ledr* ð2:16Þ

ieqs ¼
3Lr

PLMl
e
dr*

T* ð2:17Þ

or ¼ 3RrT*

Pledr*
2

ð2:18Þ

iss ¼ ieds þ jieqs

� �
ejðor þooÞt: ð2:19Þ

T� and ledr
� are the control commands, whileoo is the feedback signal. The current vectors i

s
ds

and isqs and slip or are obtained from Equations (2.16)–(2.18), and then substituted into

Equation (2.19) to give the vector iss for induction motor control.

2.2.4 Direct Self Control

Equation (2.6) (the 1st fifth-order equation) is used to realize direct self control. Using the first

three equations in Equation (2.6), we can obtain the stator flux lsm and torque T from themeasured

stator currents and voltages. Figure 2.2 shows that the direct self control system has the same

architecture as the state feedback control system inmodern control theory as shown in Figure 2.1.
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Using one of the last two equations in Equation (2.6), we can estimate the rotor speed by

measurements of voltage and current together with the flux. A control scheme of DSC with

speed estimation is shown in Figure 2.3.

2.2.5 Acceleration Control Proposed

From the first three equations of Equation (2.6), torque T may be expressed as a function of

stator current iss and stator flux l
s
m while the l

s
m is a function of i

s
s and stator voltage V

s
s . The two

functions may be expressed as:

T ¼ f1 iss; l
s
m

� �
ð2:20Þ

lsm ¼ f2 iss;V
s
s

� �
: ð2:21Þ

Flux and torque 
calculations based 
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Figure 2.2 Direct self control system.
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Figure 2.3 Direct self control system with speed estimation.
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Equations (2.20) and (2.21) can be rewritten as:

lsm ¼ f3 iss; T
� � ð2:22Þ

Vs
s ¼ f4 lsm; i

s
s

� �
: ð2:23Þ

Substituting Equation (2.22) and T ¼ J
doo

dt
þ TL into Equation (2.23),

Vs
s ¼ f5

doo

dt
; iss

� �
: ð2:24Þ

In acceleration control, Equation (2.24) is used as a control function while the acceleration

doo/dt and iss are obtained or derived from the measured signals. Although the concept of

acceleration control can be explained using the above theory, the details of the control scheme

need to be developed at the algorithm level (Shi, Chan, and Wong, 1997).

2.2.6 Need for Intelligent Control

The difficulties that arise in induction motor control can be classified under three

categories: (a) complex computation, (b) nonlinearity, (c) uncertainty (Narendra and

Mukhopadhyay, 1996).

a. Complex computation – In induction motor control, application of conventional control

theory and control algorithm often results in complex computations. The vector controls

(especially direct self control) are seldom used in practical drive systems due to these

complex computations and the associated control time delays. In state estimation control

schemes (for example, speed sensorless control) and parameter identification, the computa-

tions will be even more complex.

b. Nonlinearity – The presence of nonlinearites in an inductionmotor drivemakes the control

problem complicated. Current research efforts in nonlinear control theory focus on

differential geometric methods and attempt to extend well-known results in linear control

theory to the nonlinear domain. Despite the great interest in this area, many fundamental

theoretical issues related to nonlinear control are currently still not well-understood.

Consequently, many of the well-established theoretical results cannot be directly used for

practical control.

c. Uncertainty – Certain essential information required in the mathematical model of the

induction motor drive system, such as load, exact values of machine parameters,

and noise, is unknown. Although some parameter identification and state estimation

algorithms have been proposed to resolve the problem at the expense of more complex

computations, the uncertainty problem has not been completely solved in practical

applications.

Based on the nonlinear control theory as well as the human ability to comprehend, reason, and

learn, intelligent techniques may be used to overcome the above difficulties.
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2.2.7 Intelligent Induction Motor Control Schemes

Intelligence is defined as the ability to comprehend, reason, and learn. The definition of

intelligent control from A
�
str€om and McAvoy has been used widely: ‘An intelligent control

system has the ability to comprehend, reason, and learn about processes, disturbances and

operating conditions in order to optimize the performance of the process under consideration’

(A
�
str€om and Bj€orn, 1995). Intelligent control techniques are generally classified as expert-

system control, fuzzy-logic control, neural-network control, and genetic algorithm

(Bose, 1993). Intelligent induction motor control thus refers to the control of an induction

motor drive using the above artificial intelligence techniques. The applications of expert-

system, fuzzy-logic, neural-network, and genetic algorithm in induction motor drive system

have been proposed in the literature (Bose, 1997b).

2.2.7.1 Expert-System Control Scheme (Bose, 1997a; A
�
str€om and A

�
rz�en, 1993)

Expert system is the forerunner among all the AI techniques, and from the beginning

(1960s) to 1980s, both terms (expert system and artificial intelligence) have been used

synonymously in the literature. Expert systems have been considered as a powerful method

to solve control problems without having strict knowledge of mathematical description,

particularly to deal with qualitative knowledge and reasoning with symbolic operation in a

complex system. Expert systems have been used for choice of a.c. drive products,

monitoring and diagnostics, design and simulation for a drive system. However, their

applications in induction motor control are relatively few. In this book, an expert-system

based acceleration control scheme is proposed. The acceleration control knowledge and

human comparison strategies are employed so that the cumulative error due to evaluation

of integrals and machine parameters effects of the classical vector controller can be

eliminated.

2.2.7.2 Fuzzy-Logic Control Scheme (Bose, 1997b)

Fuzzy logic is another form of artificial intelligence, but its history and applications are more

recent than expert systems. It is argued that human thinking does not always follow crisp

‘yes-no’ logic, but is often vague, uncertain, indecisive, or fuzzy. Based on this, Lofty Zadeh,

a computer scientist, introduced the ‘fuzzy logic’ or fuzzy set theory in 1965 (Zadeh, 1965)

that gradually emerged as a discipline in AI. The main characteristic of the fuzzy logic

technique is to use the fuzzy rule sets and the linguistic representation of a human’s

knowledge to describe the controlled plant or to construct the fuzzy controller. A fuzzy-

logic controller consists of fuzzification, fuzzy inference with rulebase and database, and

defuzzification. Some fuzzy-logic controllers have already been designed for induction

motor control, such as FOC with fuzzy efficiency optimizer and fuzzy-logic based DSC

(Sousa, Bose, and Cleland, 1995; Mir, Zinger, and Elbuluk, 1994). In this book, a hybrid

fuzzy/PI two-stage control scheme is proposed. In the scheme, the fuzzy-logic frequency

controller and the PI current controller produce almost the same frequency and current

magnitude control characteristics as a field-oriented controller. Effects of parameter varia-

tion, effects of noise in measured speed and input current, and effects of magnetic saturation

are investigated.
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2.2.7.3 Neural-Network Control Scheme (Bose, 1997b; Simoes and Bose, 1995)

Neural network is the most generic form of AI for emulation of human thinking compared

to expert systems and fuzzy logic. In 1943, McCulloch and Pitts first proposed a network

composed of binary-valued artificial neurons that were capable of performing simple

threshold logic computations. The modern era of neural network with rejuvenated

research practically started in 1982 when Hopfield presented his invention. Since then,

many network models and learning rules have been introduced. The neural network is

famous for its learning ability and arbitrary approximation to any continuous function.

Research of the neural-network nonlinear dynamical control has been in progress since

1988 (Narendra and Mukhopadhyay, 1996). Recently, neural networks have been used

for the parameter identification and state estimation of induction motor drive systems.

Hybrid fuzzy and neural controller (also called a neuro-fuzzy controller) has been

designed to control a 100 kW induction motor (Bose, Patel, and Rajashekara, 1997).

Neural network with the advantage of parallel computation can be used to decrease the

controller time-delay caused by complex computation. In this book, a neural-network-

based DSC scheme is proposed to decrease the controller time delay so that the torque

and flux errors of a DSC can almost be eliminated. The proposed neural-network

controller employs the individual training strategy with the fixed-weight and the super-

vised methods (Kung, 1993).

2.2.7.4 Genetic Algorithm (Fogel, 1994)

Over the past 30 years, genetic algorithms were mainly developed in the USA by J. H.

Holland, while evolutionary strategies were developed in Germany by I. Rechenberg and

H.-P. Schwefel. Each of these constitutes a different approach, but they are both inspired

by the principles of natural evolution. The GA is a stochastic global search method that

mimics the metaphor of natural biological evolution. GA operates on a population of

potential solutions applying the principle of survival of the fittest to produce (hopefully)

better approximations to a solution. The most commonly used representation in GA is the

binary alphabet {0, 1}, while there is an increasing interest in alternative encoding

strategies, such as integer and real-coded representations (Wright, 1991). The GA differs

substantially from the more traditional search and optimization methods, and the followings

are the most significant:

1. GA searches a population of points in parallel instead of a single point.

2. GA does not require derivative information or other auxiliary knowledge; only the objective

function and the corresponding fitness levels will influence the directions of search.

3. GA uses probabilistic transition rules instead of deterministic ones.

In this book, a real-coded genetic algorithm is proposed to optimize the extended Kalman filter

(EKF) for estimating the rotor speed of an inductionmotor. It is shown that the real-codedGA is

effective for optimizing the EKF performance of three different controllers, namely the closed-

loopV/Hz controller, DSC, and FOC. TheGA-EKF computer simulations for speed estimation

show good noise rejection and they are less sensitive to machine parameter variations.

Experiments are performed on a DSP-based FOC induction motor drive in order to verify

the feasibility of the GA-EKF approach.
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2.3 Induction Motor Control Algorithms

Different control algorithms are designed based on the control theory, principle, and

hardware. Control algorithms of induction motor can be classified into three main categories

(Rajashekara, Kawamura, and Matsuse, 1996; Bose, 1997b).

(I) Scalar control: 1. Open-loop voltage/frequency (V/Hz) control

2. Slip frequency and voltage control

3. Slip frequency and current control

(II) Vector control: 4. Direct FOC

5. Indirect FOC

6. Direct self control (DSC)

7. Acceleration control

(III) Intelligent control: 8. Fuzzy control

9. Neural-network control

10. Expert-system control

11. Genetic algorithm

A fictitious control system is shown in Figure 2.4 for explaining different induction motor

control algorithms.

Speed Command Reference 
commands  

State estimation 
and feedback 

signal calculation 

Inverter 
IM

Voltage Current 

Controller 

Rotor 
speed

Feedback 
Signals

Sub-
controllers

Speed estimation 
or measurement 

Figure 2.4 A fictitious control system at the algorithm level.

Figure 2.4 shows that a control algorithm can be characterized by the choice of feedback

signals with the appropriate control function and control strategy. Various control algorithms

are represented as follows:

1. Open-loop V/F control algorithm (Bose, 1981):

a. Feedback signal F ¼ ½0�
The open loop V/Hz control scheme has no feedback signal.

b. Control function u ¼ Vsj j
o

� 	
¼ const:� o*

o*

� 	

where |Vs| is stator voltage magnitude, o is supply frequency, and o� is supply

frequency command. The ratio |Vs|/o� is maintained constant.

c. Control strategy: constant V/Hz control to maintain constant stator flux.
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2. Slip frequency and voltage control algorithm (Trzynadlowski, 1994):

a. Feedback signal F ¼ ½oo�

b. Control function u ¼ Vsj j
o

� 	
¼ const:� o

oo þor

� 	
and or ¼ f ðoo*�ooÞ

where oo
� is rotor speed command and or is slip frequency.

c. Control strategy: slip frequency control and constant V/Hz control. Setting the limit on

the slip speed in the vicinity of the peak torque point provides fast response of the drive

system according to the speed command.

3. Slip frequency and current control algorithm (Rajashekara, Kawamura, and

Matsuse, 1996):

a. Feedback signal F ¼ oo

isj j
� 	

b. Control function u ¼ isj j
o

� 	
¼ f1ðoo*�ooÞ

oo þor

� 	
andor ¼ f2ðoo*�ooÞ

c. Control strategies: slip frequency control and current control. Setting the limit on the

slip speed in vicinity of the peak torque point provides fast speed response of the drive

system according to the reference speed.

4. Direct FOC algorithm (Trzynadlowski, 1994):

The field orientation control algorithms can be divided into two types: direct FOC and

indirect FOC. In the direct FOC scheme, the rotor flux ler , torque T, and rotor flux angle yr
are feedback signals which are obtained from the air-gap flux (or stator voltage) and stator

current signals. In the indirect FOC scheme, the rotor flux ler and torque T are control

commands, while the rotor flux angle yr is the feedback signal which is obtained by

summation of the rotor speed and reference slip frequency.

In direct field-oriented control,

a. Feedback signal F ¼

yr
isds

isqs

lsdr
TL

2
6666664

3
7777775
¼ qðxÞ; where x ¼

isds

isqs

lsdr

lsqr

2
6666664

3
7777775

or x ¼

isds

isqs

Vs
ds

Vs
qs

2
6666664

3
7777775

b. Control function u ¼
idsðT*�T ; lsdr*�lsdr; yrÞ
iqsðT*�T ; lsdr*�lsdr; yrÞ

" #

with the field-orientation conditions:

leqr ¼ 0 and ledr ¼ const:

c. Control strategies: coordinate transformations, current controlled and field-orientation

conditions.

5. Indirect FOC algorithm (Trzynadlowski, 1994):

a. Feedback signal F ¼ yr½ �

b. Control function u ¼
isdsðT*�T ; lsdr*�lsdr; yrÞ
isqsðT*�T ; lsdr*�lsdr; yrÞ

" #
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with the field-orientation conditions:

leqr ¼ 0 and ledr ¼ const:

Control strategies: coordinate transformations, current controlled and field orientation

conditions.

6. DSC control algorithm (Baader, 1992):

a. Feedback signal F ¼
lsm



 



ym
T

2
664

3
775 ¼ qðxÞ; where x ¼

isds

isqs

Vs
ds

Vs
qs

2
6666664

3
7777775

b. Control function u ¼

Sa Vs
ds;V

s
qs; i

s
ds; i

s
qs; T*; lm



 

*� �
Sb Vs

ds;V
s
qs; i

s
ds; i

s
qs; T*; lm



 

*� �
Sc Vs

ds;V
s
qs; i

s
ds; i

s
qs; T*; lm



 

*� �

2
666664

3
777775

Sa, Sb, and Sc are the status of inverter switches.

c. Control strategy: hysteresis (bang-bang) control and optimum switching table.

The principle of direct self control for the torque and the flux is based on hysteresis

control with an optimum switching table. In this system, the instantaneous values of the

flux and torque are calculated from the stator voltage and current. The flux and torque

can then be controlled directly and independently by selecting the optimum inverter

switchingmodes. The selection is made so as to restrict the errors of the flux and torque

within the hysteresis bands and to obtain fast torque response with a low inverter

switching frequency and low harmonic losses.

7. Acceleration control algorithm (Shi, 1997):

a. Feedback signal F ¼ a

yðisÞ
� 	

¼ qðxÞ where x ¼
oo

ids
iqs

2
4

3
5

b. Control function u ¼
SaðyðisÞ; a*; aÞ
SbðyðisÞ; a*; aÞ
ScðyðisÞ; a*; aÞ

2
64

3
75

Sa, Sb, and Sc are the status of inverter switches, a is rotor acceleration and a� is

acceleration command.

c. Control strategy: flux angle reasoning, acceleration comparison and expert system

principle.

In the acceleration control scheme, the approximate flux angles are obtained by an

inference system from the stator current angles and acceleration states. The inverter

switchingmodes are determined by comparing two accelerations produced by different

voltage vectors with respect to the stator current angle. The acceleration and stator

current angle are used as feedback signals.
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8. Fuzzy control algorithm (Sousa and Bose, 1994; Tang and Xu, 1994):

a. Fuzzy controller input Finput ¼
R

E

DE

2
4

3
5

whereR is the feedback signal,E is the error signal, andDE is the change in error signal.

b. Fuzzification
Flinguistic

minput

� 	
¼ f ðFinputÞ

where Flinguistic denotes the input fuzzy linguistic value and minput denotes the degree of
membership of the input.

c. Fuzzy inference
u

moutput

� 	
¼ K

Flinguistic

minput

� 	� �

where u denotes the crisp value of output fuzzy linguistic value and moutput denotes the
fuzzy degree of membership of the output.

d. Defuzzification y ¼ g
u

moutput

� 	� �
where y denotes the output crisp value required by the plant.

The control algorithm is based on the fuzzy set theory. A fuzzy control algorithm

consists of fuzzification with a database, a fuzzy logic inference based on a rulebase,

and defuzzification. The fuzzification operation implements the process of converting

the crisp input values to fuzzy sets. The fuzzy set consists of elements each having a

degree of membership and associated with linguistic values. The defuzzification

operation is the process of determining the best numerical value to represent a given

fuzzy set. The database stores memberships of fuzzy variables. The rulebase provides

the necessary linguistic control rules for the fuzzy inference.

9. Neural-network control algorithm (Bose, 1997a):

a. Input-output pair
x

z

� 	
¼ gðtÞ

IMðxÞ

" #

where x is the input samples, z is the outputs,

g(t) denotes the generation function of input samples, and IM denotes the plant outputs.

b. Training
w

b

� 	
¼ Re f

x

z

� 	� �� �

where w is the weight of network, b is the bias of network, f denotes the activation

function, and Re denotes the training algorithm.

c. Implementation z0 ¼ f ðwx0 þ bÞ
where z0 denotes the output of neural-network and x0 denotes the practical inputs.

A neural model is mathematically represented by a basis function [w, b] and an

activation function f(.). The selection of these functions often depends on the applica-

tions of neural network. Neural network is used to approximate the control function of

induction motor through training procedures.

10. Expert system control algorithm (A
�
str€om and A

�
rz�en, 1993; Lu, 1996; Bose, 1997a):

a. Knowledge acquisition Kbase ¼ f ðExpertÞ
where Kbase denotes the knowledge base, Expert denotes the expert knowledge, and f is

the knowledge acquisition procedure.
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b. Input and output interfaces x0 ¼ gðxÞ; and x ¼ hðz0Þ
where x is the electrical signal. x0 and z0 denote the numerical and linguistic codes.G(.)

implements the electrical signal encoding and h(.) implements the numerical and

linguistic decoding.

c. Inference engine z0 ¼ Inference
Kbase

x0

" # !

where Inference denotes the inference procedure.

d. User interface L ¼ eðExecutionÞ

K 0
base ¼ f 0ðUser;KbaseÞ

where Execution is the execution of the rules, L is natural language, User denotes a user,

e(.) is an explanation function, and f0 denotes themodification procedure of the knowledge

base.

Based on the knowledge acquired from control experts in encoded form, the control

function is derived by the on-line inference engine. The humanlike knowledge-inference

systemmay be applied to copewith complex induction motor drive systems, or those with

parameter uncertainties.

11. Genetic algorithm in control:

a. Input-output pair
x

z

� 	
¼ gðtÞ

IMðxÞ
� 	

where x denotes the input samples, z denotes the outputs, g(t) denotes the generation

function of input samples, and IM denotes the plant outputs.

b. Coding parameters S ¼ MðPÞ
where P is controller parameters, M is coding method, and S is a genetic string.

c. Reproduction with fitness evaluation Snþ 1 ¼ RðSnÞ
where Snþ 1 is the new reproduction and R denotes the reproduction algorithm with

fitness evaluation.

d. Crossover and Mutation Snþ 2 ¼ CMðSnþ 1Þ
where CM is the crossover and mutation method.

e. Decoding parameters PL ¼ NðSLÞ
where N is decoding method, SL is an optimum string, and PL is optimum controller

parameters.

Genetic algorithm is a search algorithm based on the mechanics of natural selection

and natural genetics. GA has the properties that make it a powerful technique for

optimizing controller parameters for an induction motor drive.

2.4 Speed Estimation Algorithms

The speed sensorless strategies have aroused great interest among induction motor control

researchers. In these strategies, the motor speed is estimated and used as a feedback signal for

closed-loop speed control. These algorithms may be classified into the following categories

(Rajashekara, Kawamura, and Matsuse, 1996; Holtz, 1996; Ilas et al., 1996):
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1. Open loop with slip compensation algorithm (Rajashekara, Kawamura, and Matsuse,

1996). The rotor speed is obtained from summation of synchronous speed and slip

speed which is estimated from the load. This algorithm can only be used in the steady-

state case.

Model: Steady-state torque-speed relationship.

Speed estimation function: oo ¼ oþorðTLÞ

2. Slip frequency algorithm (Abbondanti and Brennen, 1975). The slip speed is calculated

based on a steady-state model of the motor.

Model: Steady-state ‘T’ equivalent circuit

Speed estimation function: oo ¼ ðo; iss;Vs
s Þ

3. Speed estimation algorithm using state equations (Joetten andMaeder, 1983). The rotor

speed can be calculated from the state equation Equation (2.14), which can be expressed as

Model: the 11th fifth-order model with ‘T’ equivalent circuit

Speed estimation function: oo ¼ f ðVs
ds;V

s
qs; i

s
ds; i

s
qs; l

s
dr; l

s
qrÞ

4. Flux estimation and flux vector control algorithm (Xu and Doncker, 1988). The rotor

speed is obtained by estimating the synchronous speed and slip speed. The synchronous

speed is replaced by stator flux speed and the slip speed is estimated based on machine

parameters of the motor.

Model: the first fifth-order equation with ‘G’ equivalent circuit
Speed estimation function: oo ¼ f ðVs

ds;V
s
qs; i

s
ds; i

s
qs; l

s
dm; l

s
qmÞ

5. Observer algorithm (Cuzner, 1990; Jansen, 1996). The fluxes are calculated by a voltage

model and a current model, separately. The speed is estimated based on the difference

between two fluxes.

Model: Voltage model and current model

Speed estimation function: oo ¼ f ðVds;Vqs; ids; iqs; ldr; lqr; kp; kIÞ

where Kp and KI are the adaptation mechanism gains.

6. Model reference adaptive algorithm (Trzynadlowski, 1994). A comparison is made

between the outputs of two estimators. The first estimator, which does not involve the

estimated rotor speed, is considered as a reference model of the induction motor.

The second estimator, which involves the estimated rotor speed, is regarded as an

adjustable model. The error between the outputs of the two estimators is used to derive

a suitable adaptation mechanism that generates the estimated rotor speed to modify the

adjustable model.
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Model: Reference model of induction motor and adjustable model

Speed estimation function: oo ¼ f ðea; eb;~ea;~eb; kp; kIÞ

whereKp andKI are the adaptationmechanism gains, ea and eb are outputs of the reference
model of induction motor, and ~ea and ~eb are outputs of the adjustable model. The outputs

may be flux, counter emf, reactive power, and so on.

7. Extended Kalman filter estimation algorithm (Salvatore, Stasi, and Tarchioni, 1993;

Kim, Sul, and Park, 1996). Extended Kalman filter is employed to estimate the rotor speed,

based on the measured stator currents and voltages. Kalman filter algorithm is based on

complete electrical model of induction motor for determination of the system state. The

rotor speed can be determined based on the measured voltages and currents. Using the state

equations and Kalman filter, the rotor speed (an extended state) is estimated.

Model: Complete electrical model of induction motor with an

extended state, rotor speed.

Speed estimation function: oo ¼ f ðVds;Vqs; ids; iqs;ooÞ

8. Neural network algorithm (Simoes and Bose, 1995). Neural network algorithm is based

on a learning process. Neural networks have the advantages of extremely fast parallel

computation and fault tolerance characteristics due to distributed network intelligence,

which would be ideal for speed estimation of an induction motor.

Model: Neural network

Speed estimation function: oo ¼ f ðids; iqs; lds; lqsÞ

All speed sensorless algorithms depend on the mathematical model of the induction motor.

2.5 Hardware

Hardware implementation of inductionmotor control involves three essential components, and

hence three important technical areas:

1. Induction motor (involving electrical machine techniques)

2. Power inverter (involving power electronics techniques)

3. Controller (involving computer and control techniques).

A scalar controller is usually implemented with analog electronic components, and a vector

controller is implemented with a digital device DSP or a microcontroller. The fuzzy control

algorithmmay be implemented with a special fuzzymicrocontroller or a DSP, while the expert

system algorithm may be implemented with DSP. The DSP based controller is the current

trend of induction motor control. With the ability of implementing complex computations,

a DSP such as ADMC331 is a suitable solution to implement high-performance algorithms

and intelligent algorithms for induction motor drives.

Based on an understanding of the induction motor control system, a taxonomy of induction

motor control is given in Table 2.1.
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3

Modeling and Simulation of
Induction Motor1

3.1 Introduction

Evaluation of an induction motor control system can be performed in two ways. The first

approach (at hardware level) uses a realmotorwith an inverter and a controller. The controller is

usually constructed using electronic devices, such as ICs (integrated circuits), or a DSP (digital

signal processor) with the algorithm coded in assembler or ‘C’ language. The advantages of the

experimental approach are that it includes the actual noise present, the practical inverter voltage

and current waveforms, and sensor characteristics that may not be included in a computer

simulation. Themain disadvantage of the practical approach is that the experimental results are

valid only for the system being investigated such as motor type, rating, and inverter supply.

Besides, some of the electrical parameters may be difficult or impossible to measure. The

second approach (at algorithm level) is a computer simulation of the system (Krause and

Thomas, 1965; Chan, Jiang and Chen, 1993; Mohan et al., 1997). In the computer simulation

environment, all quantities can be readily observed and the parameters can be altered to

investigate their effect on the system, thereby providing useful information for controller

design. Process noise and sensor noise can be added to simulate the performance. Motor type,

size, andpower supplymaybe changed easily.Development of anewmotor driveoften involves

expensive prototypes. Advanced computer simulation and mathematical modeling techniques

with solution procedures can produce optimal designs with minimum time, cost, and effort.

1 (a) Portions reprinted from K.L. Shi, T.F. Chan and Y.K. Wong, “Modelling and simulation of the three-phase

induction motor,” International Journal on Electrical Engineering Education, 36(2), 163–172, � 1999, with

permission from Manchester University Press.

(b) Portions reprinted by permission of K.L. Shi, T.F. Chan and Y.K. Wong, “Modelling of the three-phase induction

motor using SIMULINK,” The 1997 IEEE Biennial International Electrical Machines and Drives Conference, Paper

WB3-6, May 18–21, 1997, Milwaukee, Wisconsin, U.S.A. � 1997 IEEE.

(c) Portions reprinted fromK.L. Shi, T.F. Chan,Y.K.Wong and S.L.Ho, “Modeling and simulation of a novel two-stage

controller for an induction motor,” International Association of Science and Technology for Development (IASTED)

Journal on Power and Energy Systems, 19(3), 257–264, � 1999, with the permission from ACTA Press.
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Modeling and simulation of the three-phase induction machine is well documented in the

literature and digital computer solution can be performed using several methods, such as

numeric programming, symbolic programming and the electromagnetic transient program

(EMTP) (Domijan and Yin, 1994). Throughout this book, MATLAB�/Simulink software will

be used for the dynamic modeling of the induction motor and simulation studies. The main

advantage of Simulink over other programming softwares is that, instead of compilation of

program code, the simulation model is built up systematically by means of basic function

blocks. A set of machine differential equations can thus be modeled by interconnecting

appropriate function blocks, each of which performing a specific mathematical operation.

Programming efforts are drastically reduced and error debugging is easy. Since Simulink is a

model operation program, the simulation model can be easily developed by addition of new

sub-models to cater for various control functions. As a sub-model, for example, the induction

motor could be incorporated in a complete electric motor drive system.

3.2 Modeling of Induction Motor

Three simulation models of induction motor are developed using MATLAB�/Simulink in this

chapter. They are the current-input model, the voltage-input model, and the discrete-state model,

which can be used to study different induction motor drive systems. The current-input model is

more suitable for the study of a current-controlled drive system,while thevoltage-inputmodel and

the discrete-state model are more suitable for the study of inverter-fed induction motor control.

The current-input model is based on Equation (2.15), the reduced-order equation of the 11th

fifth-order equation in the excitation reference frame,while the discrete-statemodel is based on

a discrete-time form of Equation (2.14), the 11th fifth-order equation in the stator reference

frame.Modeling of the voltage-input model is based on the 8th fifth-order equation, which can

be expressed in matrix form as follows (Trzynadlowski, 1994):

d

dt

isds
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where Lc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LsLr�L2M

p
.
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Rotating transformation from abc to dq coordinates, also called 3/2 rotating transformation,

projects balanced three-phase quantities (voltages or currents) to rotating two-axis coordinates

at a given angular velocity. The transformation is defined as follows:

Vd

Vq

" #
¼ Cdq

cosðyÞ cos y� 2p
3

� �
cos yþ 2p

3

� �

sinðyÞ sin y� 2p
3

� �
sin yþ 2p

3

� �
2
6664

3
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2
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775 ð3:2Þ
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� �
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3
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ð3:3Þ

where Cdq � Cabc ¼ 2=3.
Note that the transform matrices and multiplying factors are the same for both voltages and

currents.

In the original Park’s transformation, the factorCdq for abc to dq transformation is 2/3, while

the factorCabc for dq toabc transformation is 1. In somepublications, however,Cdq andCabc are

both defined to be
ffiffiffiffiffiffiffiffi
2=3

p
. In this book,Cdq is defined as 1 andCabc as 2/3 (Trzynadlowski, 1994).

For example, the peak value of a line-line voltage of 220V is 220� ffiffiffi
2

p ¼ 311:13 V and the

peak value of each phase voltage is 220� ffiffiffi
2

p
=

ffiffiffi
3

p ¼ 179:63 V.After a rotating transformation

from abc to dq coordinate, the peak value of Vd or Vq is 220� ffiffiffi
2

p � Cdq�
3
2
� 1ffiffi

3
p ¼ 269:444� Cdq. When Cdq¼ 1, the peak value of Vd or Vq is 269.444V. Accordingly,

themultiplying factor in the torque equation of the inductionmotormay be different depending

on the value of Cdq defined.

Another transformation, which converts three phase quantities to two phase quantities

without rotation of coordinates, is called the abc to ab coordinate transformation. It is used to

simplify the analysis of three-phase quantities, and is defined as follows.
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where Cdqs � Cabcs ¼ 2=3.
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In this book, ab axes are defined as ds-qs. Cdqs is 1 and Cabcs in the ab transform is 2/3

(Trzynadlowski, 1994).

The various induction motor models being studied are summarized in Table 3.1.

3.3 Current-Input Model of Induction Motor

The current-input model is based on the reference-frame theory of coordinate transformation

(Krause, Wasynczuk and Sudhoff, 1995). The simulation model is implemented using

MATLAB�/Simulink and it possesses the following characteristics:

1. It takes current source and load torque as inputs and gives the rotor speed as output.

2. The parameters may be continuously changed.

3. The model may be easily expanded and has a good user interface.

The current-input model of an induction motor consists of (1) a current (3/2) transformation

sub-model, (2) an electrical sub-model, and (3) a mechanical sub-model, as shown in

Figure 3.1.

Table 3.1 Induction motor models.

Models Equivalent

Circuit and

Reference Frame

Modeling

Equations

Computer

Execution

Time

Applications

Current-input

model

‘T’ in excitation

reference frame

Equation (2.15) Fast Current-

controlled drive

Voltage-input

Model

‘T’ in stator

reference frame

Equation (3.1) Medium Voltage-source

invert-fed drive

Discrete-state

model

‘T’ in stator

reference frame

Discrete form of

Equation (2.14)

Slow State-space

expression

Current
3/2Trans -

+

Sum

wo

Mechanical
sub-model

1

Rotor
speed

Te

TL
Ids

Iqs

Slip frequency

Electrical
sub-model

w

4

Load

1

Current
magnitude

3

Current
frequency

3

P/2

2

Current
phase

sub-model

Figure 3.1 Current-input model of an induction motor in Simulink.
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3.3.1 Current (3/2) Rotating Transformation Sub-Model

The current (3/2) rotating transformation sub-model consists of a current source block and a

current 3/2 rotating transformation block. The current source block is used to build a current

source based on input frequency, phase, and magnitude. The current (3/2) rotating transfor-

mation block is used to convert the three-phase stator current to the corresponding vectors in the

excitation reference frame.

The current source block is based on the following current equation.

ias ¼ A cos
Ð
odt

� �
ibs ¼ A cos

Ð
odt�2p=3

� �
ics ¼ A cos

Ð
odtþ 2p=3

� �
8>><
>>: ð3:6Þ

The representation of one supply phase using Simulink blocks is shown in Figure 3.2.

The three-phase to two-phase (3/2) rotating transformation block is based on the current

equations for phase transformation Equation (3.7).
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� �
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2
664

3
775 ð3:7Þ

The representation of 3/2 rotating transformation by Simulink blocks is shown in Figure 3.3.

The current source blocks and the 3/2 rotating transformation blocks are grouped together to

form the current 3/2 rotating transformation sub-model in the induction motor model.

3.3.2 Electrical Sub-Model

Let the rotor time constant tr¼ Lr /Rr. Equation (2.15) can be rewritten as:

T ¼ P

3Rr

LM

tr
ðieqsledr � iedsl

e
qrÞ ð3:8Þ

ibs

Output

Ampl.

Phase

Freq Product

Integrator

cos(u)

Fcn
ibs

Output

Ampl.

Phase

Freq s
1

cos(u)

Figure 3.2 Simulink block diagram of one supply phase. (Reproduced by permission of K.L. Shi, T.F.

Chan andY.K.Wong, “Modelling of the three-phase inductionmotor using SIMULINK”, The 1997 IEEE

Biennial International Electrical Machines and Drives Conference, Paper WB3-6, 18–21 May 1997,

Milwaukee, Wisconsin, U.S.A. � 1997 IEEE.)
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Figure 3.4 shows the electrical sub-model of an induction motor as described by

Equations (3.8), (3.9), and (3.10). Components ieds and ieqs of the stator current vector and

slip frequency or are the input variables and the torque T is the output variable.

.
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Inner
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Current
vector

Mux
.

Cosine vector 
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3 phase
stator
current

i
e
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ie
qs 
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ibs
ics

.

.

Figure 3.3 Simulink blocks of 3/2 rotating transformation sub-model. (Reproduced by permission ofK.

L. Shi, T.F. Chan andY.K.Wong, “Modelling of the three-phase inductionmotor using SIMULINK”, The

1997 IEEEBiennial International ElectricalMachines andDrivesConference, PaperWB3-6, 18–21May

1997, Milwaukee, Wisconsin, U.S.A. � 1997 IEEE.)
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Figure 3.4 Electrical sub-model in Simulink. (Reproduced by permission of K.L. Shi, T.F. Chan and

Y.K. Wong, “Modelling of the three-phase induction motor using SIMULINK”, The 1997 IEEE Biennial

International Electrical Machines and Drives Conference, Paper WB3-6, 18–21 May 1997, Milwaukee,

Wisconsin, U.S.A. � 1997 IEEE.)
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Construction of the electromechanical block in Simulink only requires the basic blocks of

Sum, Gain, Product, and Integrator in the Simulink library. These blocks can be easily opened

in separate windows for modification of parameters. The completed model is illustrated in

Figure 3.4.

The electrical blocks are grouped into the electrical sub-model in the inductionmotormodel.

3.3.3 Mechanical Sub-Model

When the friction coefficient of an induction motor is considered, the mechanical sub-model

based on the first line of Equation (2.15) is expressed by Equations (3.11) and (3.12), which is

constructed as shown in Figure 3.5.

doo

dt
¼ � cf

Jm þ JL
oo þ T � TL

Jm þ JL
ð3:11Þ

oo ¼ ð1=Jm þ JLÞ
pþ cf =ðJm þ JLÞ ðT � TLÞ ð3:12Þ

where p is a differential operator.

For the induction motor being studied, Jm þ JL¼ 0.8 and cf /(Jm þ JL)¼ 0.124.

The slip speed or can be calculated and fed back into the electromechanical block by

Equation (3.13).

or ¼ o� P

2
oo ð3:13Þ

The mechanical blocks are grouped into the mechanical sub-model in the induction motor

model.

3.3.4 Simulation of Current-Input Model of Induction Motor

In order to test the current-inputmodel, a power source block involving internal resistance and a

calculation block of stator voltage are configured with the current-input model as shown in

Figure 3.6.

1

Rotor
Speed

1/0.8

s+0.124

Transfer FcnSum

2

Te

1

TL

Figure 3.5 Simulink blocks of mechanical sub-model.
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In Figure 3.6, the block in dotted line is the current-input induction motor model which can

be used alone when the motor operates in the current controlled mode. In addition, a power

supply block is included to adapt the model for motor operation on a voltage source (E) or a

current source (I).

In the excitation reference frame, stator flux equation and stator voltage equation can be

expressed as (Trzynadlowski, 1994):

les ¼ Ls � L2M
Lr

� �
ies þ

LM

Lr
ler ð3:14Þ

Ve
s ¼ Rsi

e
s þðpþ joÞles ð3:15Þ

where ies ¼ ieds þ jieqs, V
e
s ¼ Ve

ds þ jVe
qs and les ¼ leds þ jleqs.

The stator voltage calculation block is based on Equations (3.14) and (3.15). The flux

ler ¼ ledr þ jleqr and pler can be obtained directly from the outputs of the electromechanical

block. When the two-phase quantities (voltages or currents) are transformed to three-phase

coordinates, the peak value of the three phase quantities is 2/3 times of the two-phase

quantities. Hence, the peak value of |Vs| in three-phase coordinates in Figure 3.6 is Vsj¼j
2
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðVe

ds
Þ2 þðVe

qsÞ2
p

.

The parameters of the induction motor used for simulation are listed under ‘Motor 1’ of

Appendix B. To illustrate the application of the dynamic model of the induction motor to

transient motor operation, a simulation study of direct-on-line starting is demonstrated. At the

initial time instant (t¼ 0), themotor, previously de-energized and at standstill, is connected to a

three-phase, 220V (line-to-line voltage) and 60Hz supply. The peak value of each phase

voltage equals
ffiffiffi
2

p � 220=
ffiffiffi
3

p� � ¼ 179:63 V. The power source is simulated by a signal

generator block in the Simulink library. It is assumed that the load TL¼ 0.5oo (N.m). The

moment of inertia JL of the load equals 0.4 kgm2.
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Figure 3.6 Block diagram of the current-input model.
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Figures 3.7–3.12 show the results of computer simulation using the Simulink model which

also accounts for the effect of internal resistance in the power source. When the power supply

has a large internal resistance, the torque oscillations in the torque/speed characteristic are

reduced and damped more rapidly, but the run up time of the motor is longer.
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Figure 3.7 Speed response, stator current, and

stator voltage when internal resistance of power

supply is 0.2O. (Reproduced bypermission ofK.L.

Shi, T.F. Chan and Y.K. Wong, “Modelling of the

three-phase induction motor using SIMULINK”,

The 1997 IEEE Biennial International Electrical

Machines and Drives Conference, Paper WB3-6,

18–21 May 1997, Milwaukee, Wisconsin, U.S.A.

� 1997 IEEE.)
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Figure 3.8 Dynamic torque-speed characteristic

when internal resistance of power supply is 0.2O.
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and Y.K. Wong, “Modelling of the three-phase

induction motor using SIMULINK”, The 1997

IEEE Biennial International Electrical Machines
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IEEE.)
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3.4 Voltage-Input Model of Induction Motor

The voltage-input model is based on the 8th fifth-order equation of induction motor. In this

modeling scheme, the induction motor consists of an electrical sub-model, a torque sub-model

and a mechanical sub-model as shown in Figure 3.13. It is more convenient to split the

induction motor model into smaller sub-models for drive design purpose.
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power supply is 0.05O. (Reproduced by
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Figure 3.11 Dynamic torque-speed characteristic

when internal resistance of power supply is 0.05O.
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The equation for computing the current vector may be derived from Equation (3.1).
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Matrix [A] and matrix [B] are defined as follows.
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By using thematrices [A] and [B], we can implement Equation (3.16) by the Simulink blocks

as shown in Figure 3.14.

In Figure 3.14, the voltage vector [Vds, Vqs] is the input vector and the current vector [ids, iqs,

idr, iqr] is the output vector.Mux1,Mux2, Sum, Integrator, andMatrixGain [B] are basic blocks

Rotor
speed

Load

Vds
Vqs Equation

(3.17)

Torque
sub-model

Equation
(3.12)

Mechanical
sub-model

3

Gain

Equation
(3.16)

Electrical
sub-model

Figure 3.13 Modeling of an induction motor in Simulink (thick arrows representing vector inputs or

outputs).

Modeling and Simulation of Induction Motor 41



www.manaraa.com

of Simulink. The function blocks of electrical sub-model in Figure 3.14 may be grouped

together and then included in the motor model in Figure 3.13.

1. Torque calculation model of induction motor

The torque equation of an induction motor is expressed as:

T ¼ PLM

3
ðidriqs � iqridsÞ: ð3:17Þ

By using Equation (3.17), we can construct the torque calculation blocks as shown in

Figure 3.15.

In Figure 3.15, Demux, Product, Sum, and Gain are basic blocks of Simulink. The torque

calculation blocks in Figure 3.15 may be grouped together and then included in the motor

model in Figure 3.13.

2. Mechanical model of induction motor

The mechanical model is same as that in the current-input model, as expressed in

Equation (3.8) and illustrated in Figure 3.5.

All function blocks of the induction motor in Figure 3.13 may be grouped together to form an

induction motor block as shown in Figure 3.16. The two scope blocks enable the speed and

torque of the motor to be observed.
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Figure 3.14 Electrical model of an inductionmotor in Simulink (thick arrows represent vector inputs or

outputs).
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Figure 3.15 Torque calculation blocks in Simulink.
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3.4.1 Simulation Results of ‘Motor 1’

The parameters of the induction motor used for simulation are listed under ‘Motor 1’ of

AppendixB, but cf¼ 0. To illustrate the transient operation of the inductionmotor, a simulation

study of direct-on-line starting is demonstrated. At the initial time instant (t¼ 0), the motor,

previously de-energized and at standstill, is connected to a three-phase, 220V (line-to-line) and

60Hz supply with an internal resistance of 0.05 O per phase. The power source is constructed

using a signal generator block from the Simulink library. The load torque TL is assumed to be

20Nm, and is independent of speed. The moment of inertia JL of the load is 0.4 kgm2.

Figures 3.17 and 3.18 show the results of computer simulation using the Simulink model.

3.4.2 Simulation Results of ‘Motor 2’

The parameters of the induction motor are listed in ‘Motor 2’ of Appendix B. A simulation

study of direct-on-line starting is carried out. At the initial instant of time, t¼ 0, the motor,

previously de-energized and at standstill, is connected to a 220V, 60Hz supply. The power

Speed
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Power
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Figure 3.16 Simulink model of an induction motor.
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Figure 3.17 Speed response of the induction motor with direct-on-line starting.
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source is constructed using a signal generator block from the Simulink library. The load torque

TL is assumed to be 2Nm, and independent of the speed. The moment of inertia JL of the load

is 0.05 kgm2. Figures 3.19–3.21 show the results of computer simulation using the voltage-

input model.

3.4.3 Simulation Results of ‘Motor 3’

‘Motor 3’ is an experimental motor (model 295) manufactured by Bodine Electric Company.

Themotor parameters listed in ‘Motor 3’ ofAppendixB have been obtained from standard tests

as outlined in Appendix H. To illustrate the transient operation of the induction motor,
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Figure 3.18 Torque response of the induction motor with direct-on-line starting.
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Figure 3.19 Stator current of the induction motor with direct-on-line starting.
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a simulation study of direct-on-line starting is carried out. At the initial time instant, t¼ 0, the

motor, previously de-energized and at standstill, is connected to a 220V, 60Hz supply. The

power source is constructed using a signal generator block from the Simulink library. The load

torque TL is assumed to be 0.1Nm, and independent of speed. The moment of inertia JL of the

load is assumed to be 0.001 kgm2. Figures 3.22–3.24 show the results of computer simulation

over a period of 0.4 s using the voltage-input model.

3.5 Discrete-State Model of Induction Motor

Equation (2.14) expresses a state-space equation of induction motor. The solution to the

differential equation _x ¼ AxþBu is given by (Lewis, 1992):
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Figure 3.20 Torque response of the induction motor with direct-on-line starting.
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Figure 3.21 Speed response of the induction motor with direct-on-line starting.
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xðtÞ ¼ eAðt�t0Þxðt0Þþ
ðt
t0

e Aðt�t0ÞBuðtÞdt: ð3:18Þ

In digital computation, themeasurements are taken only at integralmultiples of the sampling

period M. Thus, we can convert the continuous-time model of an induction motor to the

discrete-time model:

xnþ 1 ¼ Anxn þBnun ð3:19Þ

yn ¼ Cnxn: ð3:20Þ
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Figure 3.22 Phase-A stator current of the induction motor with direct-on-line starting.
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Figure 3.23 Torque response of the induction motor with direct-on-line starting.
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Defining t0¼ nM, t¼ (n þ 1)M, and the sampled sequence xn¼ x(nM), we may write

xnþ 1 ¼ e AMxn þ
ððnþ 1ÞM

nM

eA½ðnþ 1ÞM�t�BuðtÞdt: ð3:21Þ

Assuming that u(t) is constant between the samples, the parameters in Equations (3.19)

and (3.20) become

An ¼ e AM ; Bn ¼
ðM
0

e AMBdt; Cn ¼ C: ð3:22Þ

The conversion is accomplished by the following approximate formulas:

An ¼ e AM � IþAM ð3:23Þ

Bn ¼
ðM
0

e AMBdt � BM ð3:24Þ

Cn ¼ C: ð3:25Þ

where we denote the system matrix, the input and output matrices of the continuous system

with A, B, and C, and those of the discrete system with An, Bn, and Cn. We also assume that our

sampling time is very short compared with the dynamics of the system.Making use of the rotor

time constant tr ¼ Lr=Rr; Kr ¼ Rs þ L2MRr=L
2
r andKl ¼ ð1�L2M=Lr=LsÞ*Ls, the discrete form

of induction motor equation is derived from Equation (2.14) as follows:
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Figure 3.24 Speed response of the induction motor with direct-on-line starting.
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i
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Equation (3.26) can be implemented by an ‘S-function’ block ofMATLAB�/Simulink. The

S-function is a programdescription of a dynamic system.With the power source block, the load

block, and the scope block, the S-function block of inductionmotor is configured in Simulink as

shown in Figure 3.25.

In the discrete-state model of induction motor, the discrete state is ½isds isqs lsdr lsqroo�, the
input is [Vs

ds V
s
qs TL], and the output is [i

s
ds i

s
qs l

s
dr l

s
qr oo]. The power sourcewhich produces the

stator voltage vectors is constructed using a signal generator block in the Simulink library.

The ‘S-function’ block accommodates a short program called M-file which implements

Equation (3.26). The M-file is given in Appendix C.
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Figure 3.25 Discrete-state model of induction motor in Simulink.
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To illustrate the transient operation of the induction motor, a simulation of direct-on-line

starting is done. The induction motor parameters for the computer simulation are listed under

‘Motor 1’ of Appendix B. The load torque, TL, is assumed to be 20Nm, and independent of

speed. The moment of inertia JL of the load equals that of the motor. At the initial time instant

(t¼ 0), the motor, previously de-energized and at standstill, is connected to a three-phase,

220V (line-to-line), 60Hz supply with an internal resistance of 0.05 O per phase.

Figure 3.26 shows the results of computer simulation using the discrete-state model with

sampling timeM¼ 0.0005s. The speed-time curve is similar to that obtained using the voltage-

input model (Figure 3.17).

3.6 Modeling and Simulation of Sinusoidal PWM

Adjustable frequency operation of motors requires a symmetrical set of three-phase sine

modulated PWM (pulse-width-modulated) waveforms, adjustable in both amplitude and

frequency. The reference voltages (which are sinusoidal waves) should be adjustable in the

full speed range, normally in the area from several Hz to several hundred Hz. The PWMpatterns

were typically generated by comparing these analog reference voltages with a high-frequency

triangular carrier wave at the desired switching frequency (typically between 5 and 20kHz). The

results of the comparisons between the sinusoidal references and the carrier waveform are

the PWMsignals used to control the power devices of thevoltage source inverter that supplies the

motor. Thedesired pulsewidths are usually calculated in amicroprocessor orDSPchip and thena

PWMgeneration unit is used to produce the output patterns. In order to supply themotor, a power

converter is needed that translates the low level PWM signals from the processor to the

appropriate high voltage levels. The most common of such a power converter is the voltage

source inverter that comprises six power switching devices such as MOSFETs or IGBTs.

To study the sinusoidal PWMfor inductionmotor control, a Simulink programmodule of the

sinusoidal PWM shown in Figure 3.27 is used.
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Figure 3.26 Speed response of the induction motor with direct-on-line staring.
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In the simulation program, two ‘Constant’ blocks are used to produce the frequency and the

amplitude of the reference voltage. The block ‘3-phase sine waves’ yields three-phase

sinusoidal signals according to the frequency and amplitude of the reference voltage, while

the block ‘tri-wave generator’ yields a high-frequency triangular carrier wave. By using

three ‘Relay’ blocks (thresholds of switch on and switch off in the ‘Relay’ blocks are set as 10�4

and �10�4), we can output the three-phase sinusoidal PWM waveforms. The five ‘Scope’

blocks are used for viewing the simulation results.

The reference voltages and the triangular wave carrier of the three-phase sinusoidal PWM

are shown in Figure 3.28, which can be observed from the ‘PWM’ scope shown in Figure 3.27.
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Figure 3.27 Simulation program of the sinusoidal PWM in Simulink.
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Figure 3.28 Reference voltages and triangular wave carrier.
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Pole-A and pole-B voltages of the three-phase sinusoidal PWM are shown in Figures 3.29

and 3.30 and these can be observed from the ‘Polar A (V)’ and ‘Polar B (V)’ scopes shown in

Figure 3.27.

The line voltage of the three-phase sinusoidal PWM is shown in Figure 3.31, which can be

observed by the ‘line A-B (V)’ scope in Figure 3.27.

3.7 Modeling and Simulation of Encoder

The encoder for measuring rotor speed is an optoelectronic feedback device that uses a

patterned optical mask and an LED light source and transistor photo-sensor pairs. As the

induction motor shaft rotates, the light source either passes through the disk, or is blocked by
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Figure 3.29 Pole-A voltage of three-phase sinusoidal PWM.
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Figure 3.30 Pole-B voltage of three-phase sinusoidal PWM.
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the disk. The emitter/detector pairs produce a digital output waveform. The encoder can be

modeled by Simulink as shown in Figure 3.32.

In the encoder model, the input is rotor speed of the inductionmotor and the output is a pulse

string of the angular speed code. The rotor speed is transformed to a shaft angle by using an

‘Integrator’ block of Simulink, while a ‘Transport Delay’ block is used to control the pulse

width of the encoder output. Two ‘Constant’ blocks are used to control the magnitude of the

encoder output pulse. The ‘Switch’ block is used to control the encoder precision. If the encoder
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Figure 3.31 Line A-B voltage of three-phase sinusoidal PWM.
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Figure 3.32 Simulation model of speed encoder in Simulink.
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precision is defined as N pulses/revolution, the threshold of the ‘Switch’ is set as 2�p/N.
Figure 3.33 shows the rotor speed of the induction motor and Figure 3.34 shows the

corresponding pulse string of the rotor speed code when the encoder precision is set to be

200 pulses/revolution.
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Figure 3.33 Rotor speed of induction motor input to the encoder model.
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Figure 3.34 Pulse string output from the encoder model with a precision of 200 pulses/revolution.
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3.8 Modeling of Decoder

The function of the decoder is to transform the output pulses of an encoder into the rotor speed

signal. It can be implemented by special decoder hardware or DSP processor in a practical

application. A mathematical model of the decoder may be expressed by Equations (3.27)

and (3.28):

yoðtÞ ¼ f ðScodeÞ ð3:27Þ

oo ¼ yoðtÞ� yoðt�DtÞ
Dt

: ð3:28Þ

where Scode is output pulse of an encoder, yo is the shaft angle.
A Simulink model of the decoder is shown in Figure 3.35.

In this decoder model, a ‘Counter’ block implements Equation (3.27). A ‘Transport Delay’

block, a ‘Sum’ block, and a ‘Gain’ block implement the difference calculation according to

Equation (3.28). The value of the ‘Gain’ block equals 2�p�Dt/N, where N is the encoder

precision in pulses/revolution.

3.9 Simulation of Induction Motor with PWM Inverter and
Encoder/Decoder

To simulate the induction motor with a PWM inverter power supply and an encoder device, the

PWMmodel built in Section 3.6, the encodermodel built in Section 3.7, and the decodermodel

built in Section 3.8 are configured with the voltage-input model of induction motor in

Section 3.4. A ‘Gain’ block is used to simulate an inverter whose input is the PWM model’s

output and whose output is the polar voltages for an induction motor.

The parameters of an experimental induction motor used for the simulation are listed under

‘Motor 3’ of Appendix B. The load torque TL is assumed to be 0.1Nm, and independent of

speed. The moment of inertia JL of the load is assumed to be 0.001 kgm2, and the PWM switch

voltage is set as � 180V. Figure 3.36 shows the pole-A output voltage of the inverter and

Figure 3.37 shows the line voltage VAB supplied to the induction motor. Figure 3.38 shows the

phase-A stator current of the induction motor and Figure 3.39 shows the torque response of the

induction motor.
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Figure 3.35 Decoder model in Simulink window.

54 Applied Intelligent Control of Induction Motor Drives



www.manaraa.com

Figure 3.40 shows the rotor speed measured by the encoder and decoder models built in

Sections 3.7 and 3.8 respectively.

Figure 3.41 shows the rotor speed measured by the encoder and decoder models, when the

encoder precision is set as 2000 pulses/revolution.

3.10 MATLAB�/Simulink Programming Examples

MATLAB� (The MathWorks, Inc., 2008a) is a popular computing software. Using easy-to-

understand program language, MATLAB� can manipulate matrices, functions, algebraic
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Figure 3.36 Pole-A voltage of the inverter output to the induction motor.
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Figure 3.37 Line voltage VAB supplied to the induction motor.
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expressions, and it is provided with facilities for plotting of computed data. Simulink (The

MathWorks, Inc., 2008b) is a graphical programming tool that must run in the MATLAB�

environment. Simulink (The MathWorks, Inc., 2008c) can be used to model, simulate and

analyze dynamic systems by using graphical blocks. It should be mentioned that the functions

supported by Simulink is only a subset of those supported by MATLAB�. Some complex

algorithms, such as Genetic Algorithm or algebra operation, can only be performed by

MATLAB� codes. Nevertheless, graphical programming proves very helpful for a nonpro-

fessional programmer. Basically, there are three ways to simulate a dynamic system on
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Figure 3.38 Phase-A stator current of the induction motor.
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Figure 3.39 Torque response of the induction motor with PWM inverter supply.

56 Applied Intelligent Control of Induction Motor Drives



www.manaraa.com

MATLAB�/Simulink. The first method is to write program codes of MATLAB� language and

to perform the codes in the MATLAB� command window. The second method is to create a

simulation model with various blocks from the Simulink library and to execute the simulation

of the model in Simulink. The third method is simulation using hybrid MATLAB� codes and

Simulink blocks.

When MATLAB� is started, a main window will appear as shown in Figure 3.42.

In the MATLAB�window, various calculation and simulation may be performed by typing

corresponding commands into the command line. The commands may be an equation, a

function, or a sequence of codes.
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Figure 3.40 Rotor speed measured by an encoder with a precision of 200 pulses/revolution.
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Figure 3.41 Rotor speed of the induction motor with an encoder of 2000 pulses/revolution.
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In this section, six exampleswill be given to illustrate programming of Park’s transformwith

MATLAB� codes, Simulink blocks, and hybrid methods. The six different programming

examples are useful for mastering the basic steps of MATLAB�/Simulink programming.

Example 3.1 Programming by MATLAB� commands

Example 3.2 Programming by Simulink blocks

Example 3.3 Programming by Simulink blocks with self-defined expression

Example 3.4 Programming by Simulink blocks which calls a MATLAB� function

Example 3.5 Programming by MATLAB� function which calls a Simulink model

Example 3.6 Programming by calling an ‘abc_to_qd0’ block

Example 3.1 uses only MATLAB� commands and Example 3.2 uses only Simulink blocks.

Example 3.3 illustrates using self-defined expression to simplify a Simulink model.

The Examples (3.4–3.6) illustrate how to program with hybrid MATLAB� function and

Simulink blocks. The hybrid programming method is useful in genetic algorithm and

extended Kalman filter simulations, as these are functions of MATLAB� in the present

MATLAB�/Simulink version. When a Simulink model is optimized by the Genetic

Algorithm, it needs to call the Simulink model from MATLAB� function. When an

extended Kalman filter of MATLAB� function is embedded in a Simulink model, the

Simulink model needs to call the MATLAB� function.

Figure 3.42 MATLAB� window.
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Example 3.1 Programming of Park’s Transformation by MATLAB� Commands

The original Park’s transformation of voltage is expressed as

Vds

Vqs

" #
¼ 2

3

cos ðyÞ cos y� 2p
3

� �
cos yþ 2p

3

� �

sin ðyÞ sin y� 2p
3

� �
sin yþ 2p

3

� �
2
6664

3
7775

Vas

Vbs

Vcs

2
664

3
775 ð3:29Þ

In Park’s transformation, the inputs are the vector [Vas, Vbs, Vcs] and the reference angle y,
while the output vector is [Vds, Vqs]. To simulate Park’s transformation, the input data needs to

be created first. Then the transformation function needs to be expressed by MATLAB codes.

Finally, the results of the transformation need to be plotted.

Step 1 Create Data of Three Phase Voltages

The three phase voltages [Vas, Vbs, Vcs] with a frequency of 60Hz and amplitude of 1Vmay be

expressed as follows:

Vas ¼ sin ð2p� 60tÞ ð3:30Þ

Vbs ¼ sin 2p� 60t� 2

3
p

� �
ð3:31Þ

Vcs ¼ sin 2p� 60tþ 2

3
p

� �
: ð3:32Þ

In the example, simulation time is set as 0.03 s and step size is set as 0.0001s. Type the

following code in the MATLAB� command line to create the time variable, ‘t’.

>> t = [0:0.0001:0.03];

Type the following code to create data of the three phase voltages.

>> Vas = sin(2*pi*60*t);

>> Vbs = sin(2*pi*60*t - 2/3*pi);

>> Vcs = sin(2*pi*60*t + 2/3*pi);

Type the following code for plotting the waveforms of the three phase voltages.

>> plot(t, Vas, ‘blue’);

>> hold on;

>> plot(t, Vbs, ‘red’);

>> plot(t, Vcs, ‘black’);

>> hold off;

The ‘plot’ command is used to show thewaveforms of the three phase voltages.Vas is plotted

in blue, Vbs is plotted in red, and Vcs is plotted in black. Use the ‘hold on’ and ‘hold off’

commands to keep the waveforms of the three phase voltages in one picture frame.
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The above codes may be combined as follows:

clear

t = [0:0.0001:0.03];

Vas = sin(2*pi*60*t);

Vbs = sin(2*pi*60*t - 2/3*pi);

Vcs = sin(2*pi*60*t + 2/3*pi);

plot(t, Vas, ’blue’);

hold on;

plot(t, Vbs, ’red’);

plot(t, Vcs, ’black’);

axis([0 0.03 -1.2 1.2]);

hold off;

The entire code sequence may be copied into the MATLAB� command line. The results of

executing the code are shown in Figure 3.43.

Step 2 Create Reference Angle of Transformation

The reference angle of transformation is represented by a 100Hz sawtooth wave with

amplitude equal to 2p rad. Type the following code in the MATLAB� command line to

create data of the reference angle which is saved in variable ‘Ra’. The time variable ‘t’ in the

codes has been created in Step 1.

>> Ra = pi + pi*sawtooth(2*pi*100*t);

The reference angle created may be plotted by following commands.

>>plot(t, Ra);

>>axis([0 0.03 0 2*pi]);

Figure 3.43 Waveforms of three phase voltages Vas, Vbs, and Vcs.
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The command ‘axis’ is used to set the x-axis and y-axis limits. In the example, the x-axis is time

‘t’ with range from 0 to 0.03 s and the y-axis is anglewith range from 0 to 2p rad. Thewaveform
of the reference angle is shown in Figure 3.44.

Step 3 MATLAB� Code of Park’s Transformation

In Step 1, the simulation time is set as 0–0.03 s with a step size of 0.0001s, hence, the data size

of the simulation is 301 (including one data at t¼ 0 s).

Park’s transformation is implemented by the following code, the results being saved in the

variables Vds and Vqs.

>>for i = 1:301;

>>Vds(i)= 2/3*[cos(Ra(i))’, cos(Ra(i)-2/3*pi)’,

cos(Ra(i) + 2/3*pi)’]*[Vas(i);Vbs(i);Vcs(i)];

>>Vqs(i) = 2/3*[sin(Ra(i))’, sin(Ra(i)-2/3*pi)’,

sin(Ra(i) + 2/3*pi)’]*[Vas(i);Vbs(i);Vcs(i)];

>>end

It is easily seen that the Park’s transformation given by Equation (3.29) is implemented by the

looping statements. The results may be plotted by following commands.

>>plot(t, Vds, ’blue’);

>>hold on;

>>plot(t, Vqs, ’red’);

>>hold off;

Step 4 Create a New MATLAB� Function of Park’s Transformation

A new MATLAB� file may be created by clicking ‘File’ and selecting ‘New’ in MATLAB�

window. Copy all the codes in Steps 1�3 into the new file and save it with the name

‘Example1_Park_transform’ with suffix ‘.m’ (the extension ‘m’ means MATLAB� file),

that is, ‘Example1_Park_transform.m’. The file may be executed by typing the filename

Figure 3.44 Waveform of the reference angle.
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‘Example1_Park_transform’ in the MATLAB� command line.

The file ‘Example1_Park_transform.m’ is listed as follows:

% Clear all variables in workspace

clear

% Step 1

t = [0:0.0001:0.03];

Vas = sin(2*pi*60*t);

Vbs = sin(2*pi*60*t - 2/3*pi);

Vcs = sin(2*pi*60*t + 2/3*pi);

subplot(3,1,1);

plot(t, Vas, ’blue’);

hold on;

plot(t, Vbs, ’red’);

plot(t, Vcs, ’black’);

axis([0 0.03 -1.2 1.2]);

hold off;

% Step 2

Ra = pi + pi*sawtooth(2*pi*100*t);

subplot(3,1,2);

plot(t, Ra);

axis([0 0.03 0 2*pi]);

% Step 3

for i = 1:301;

Vds(i)= 2/3*[cos(Ra(i))’, cos(Ra(i)-2/3*pi)’,

cos(Ra(i) + 2/3*pi)’]*[Vas(i);Vbs(i);Vcs(i)];

Vqs(i) = 2/3*[sin(Ra(i))’, sin(Ra(i)-2/3*pi)’,

sin(Ra(i) + 2/3*pi)’]*[Vas(i);Vbs(i);Vcs(i)];

end

subplot(3,1,3);

plot(t, Vds, ’blue’);

hold on;

plot(t, Vqs, ’red’);

axis([0 0.03 -1.2 1.2]);

hold off;

Note:

1. ‘%’ is comment line.

2. Command ‘subplot’ is used to placemultiple plots in same figure frame. Command ‘subplot

(n,m, k)’ placem� n pictures in a figure framewherem is size of rows, n is size of columns

and k is the index of current plot.

The results are shown in Figure 3.45.

Example 3.2 Programming of Park’s Transformation by Simulink Blocks

Step 1 Creating a New Simulink Model

From theMATLAB�window, Simulinkmay be called by typing ‘Simulink’ in theMATLAB�

command line or by clicking the ‘Simulink’ icon on the upper left corner of the MATLAB�

window. The ‘Simulink Library Browser’ window shown in Figure 3.46 will appear.
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Click the icon as indicated in Figure 3.46 (or select ‘New’ and ‘Module’ from ‘File’) to create

a blank model as shown in Figure 3.47.

Step 2 Building a Simulink Model of Park’s Transformation

Figure 3.48 shows the library of ‘Simulink/Source’. In the library, the ‘Constant block’, ‘Sine

wave’ block, and ‘Repeating Sequence’ block can be found. Paths of other blocks can be found

Waveforms 
of three phase 
voltages  

Reference angle 

Waveform of
Vds voltage  

Waveform of
Vqs voltage  

Figure 3.45 Simulation results of Example 3.1.

Click to create  
a new Simulink 
model 

Figure 3.46 Simulink library browser.
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in Table 3.2 (in the rightmost column named ‘Libraries and path’). Drag these blocks into the

new model and connect them to build the Simulink model as shown in Figure 3.48.

Step 3 Parameter Configuration of Simulink Model

The Simulink block parameters and simulation parameters need to be configured, separately.

The parameters of the Simulink blocks are listed in Table 3.2. Click to open each block to edit

the parameters.

The simulation parameters need to be configured with the following values.

1. Simulation time is from 0 to 0.03 s.

2. Max step size is 0.0001s.

Figure 3.47 A blank Simulink model.

Click to run the model 

Figure 3.48 Simulink model of Park’s transformation.
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3. Other parameters are default values.

Press down ‘CtrlþE’ keys to open and edit the simulation parameters as shown in

Figure 3.49.

Table 3.2 Parameters of Simulink blocks.

Blocks Parameters (unspecified is default value) Libraries and path

Vas Amplitude: 1; Frequency: 60�2�pi; Phase: 0 Simulink/Sources/Sine wave

Vbs Amplitude: 1; Frequency: 60�2�pi; Phase:
�2/3�pi

Simulink/Sources/Sine wave

Vcs Amplitude: 1; Frequency: 60�2�pi; Phase:
2/3�pi

Simulink/Sources/Sine wave

angle Time values: [0 0.01]; Output values:

[0 2�pi]
Simulink/Sources/Repeating Sequence

Constant1 Constant value: �2/3�pi Simulink/Sources/Constant

Constant2 Constant value: 2/3�pi Simulink/Sources/Constant

sin Function: sin Simulink/Math Operations/

Trigonometric Function

cos Function: cos Simulink/Math Operations/

Trigonometric Function

product Default value Simulink/Math Operations/Product

Add List of signs: þ þ þ Simulink/Math Operations/Add

Gain Gain: 2/3 Simulink/Math Operations/Gain

Scope2 Default value Simulink/Sinks/Scope

Figure 3.49 Configuration parameters of the simulation.
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Step 4 Running the Simulink Model of Park’s Transformation

Click the run icon shown in Figure 3.49 to start the simulation of Park’s transformation. The

simulation results may be observed by clicking the ‘Scope2’ block as shown in Figure 3.50.

Example 3.3 Programming of Park’s Transformation using Simulink Blocks and

Self-Defined Expression

In order to simplify the Simulink model of Park’s transformation, a user-defined function

block, named ‘Fcn’, is employed. The block may be found through the library path ‘Simulink/

User-Defined Functions’. Drag the block from the library into the Simulink model to build the

model of Park’s transformation as shown in Figure 3.51.

Click the two ‘Fcn’ blocks as shown in Figure 3.51 separately to input the self-defined

functions into the expression line.

In ‘Fcn1’ block, ‘Sample time’ is the default value and the following expression is input: 2/3�

(cos(u(4))� u(1) þ cos(u(4) �2/3�pi)� u(2) þ cos(u(4) þ 2/3�pi)� u(3)). Figure 3.52 shows

how the expression is input into the ‘Fcn1’ block.

For ‘Fcn2’ block, the following expression is input:

2/3*(sin(u(4))* u(1) + sin(u(4)-2/3*pi)*

u(2) + sin(u(4) + 2/3*pi)* u(3))

In Example 3.3, simulation parameters, such as simulation time and step size are same as those

in Example 3.2. The simulation results may be observed by clicking ‘Scope2’ in the Simulink

model as shown in Figure 3.51. The simulation results of Example 3.3 are same as those in

Example 3.2.

Figure 3.50 Simulation results of Example 3.2.
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Example 3.4 Programming of Park’s Transformation Using Simulink Blocks which

Calls a MATLAB� Function

In this example, a MATLAB� function is called by a Simulink model to implement Park’s

transformation. MATLAB� function calls are useful in some applications, for example, in the

implementation of extended Kalman filter in a Simulink model.

Step 1 Create a MATLAB� Function of Park’s Transformation which may be Called by

Simulink Model

As inExample 3.1, a newMATLAB�filemay be created by clicking ‘File’ and selecting ‘New’

in MATLAB� window. Input the following code into the new file and save it with name

Figure 3.51 Simulink model of Example 3.3.

Figure 3.52 Self-defined function being entered into ‘Fcn1’.
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‘Example4_Park_Transform.m’.

function Vdqs=Example4_Park_Transform(x)

Vdqs(1) = 2/3*(cos(x(4))*x(1) + cos(x(4)-

2/3*pi)*x(2) + cos(x(4) + 2/3*pi)*x(3));

Vdqs(2) = 2/3*(sin(x(4))*x(1) + sin(x(4)-

2/3*pi)*x(2) + sin(x(4) + 2/3*pi)*x(3));

end

The above code defines a MATLAB� function whose name is ‘Example4_Park_Transform.

m’. The output of the function is a vector ‘Vdqs’ which includes two elements, Vdqs(1) and

Vdqs(2), which represent Vds and Vqs, respectively. ‘x’ is input of the function. Elements of

‘x’, x(1), x(2), and x(3) represent Vas, Vbs, and Vcs separately, while x(4) represents the

transformation reference angle.

Step 2 Building a Simulink Model to Call the MATLAB� Function

A ‘MATLABFcn’ block is used to call aMATLAB� function. The blockmay be found through

library path ‘Simulink/User-Defined Functions’. Drag the block from the library into a Simulink

model to build the model of Park’s transformation as shown in Figure 3.53.

Click the ‘MATLAB Fcn’ block in Figure 3.53 to open it as shown in Figure 3.54. In the

‘MATLAB function’ window, type in ‘Example4_Park_Transform’ and other parameters are

default values.

Click the ‘OK’ icon to finish the block configuration.

Step 3 Running the Simulink Model of Example 3.4

The simulation results of Example 3.4 are the same as those in previous examples, and theymay

be observed by clicking ‘Scope1’ and ‘Scope2’ in the Simulinkmodel as shown in Figure 3.53.

The waveforms in ‘Scope1’ are the same as those in Figure 3.43 in Example 3.1 and the

waveforms in ‘Scope2’ are same as those in Figure 3.50.

Figure 3.53 Simulink model of Example 3.4.
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Example 3.5 Programming of Park’s Transformation by aMATLAB� Function which

Calls a Simulink Model

This example illustrates how to call a Simulink model from aMATLAB� code. This operation

is convenient for some applications, for example, optimization of a Simulink model using

genetic algorithm (which is a MATLAB� function in the present MATLAB�/Simulink

version).

Step 1 Building a Simulink Model

A ‘ToWorkspace’ block is employed to store data intoworkspace and the datawill be called by

MATLAB� function. The blockmay be found through library path ‘Simulink/Sinks’. Drag the

block from the library into the Simulink model to build the Simulink model of Example 3.5, as

shown in Figure 3.55.

Click to open the ‘To Workspace’ block in Figure 3.55. Enter ‘x’ into the ‘Variable name’

window and select ‘Array’ in the ‘Save format’window.Other parameters are the default values

as shown in Figure 3.56.

Click the ‘OK’ icon to finish the block configuration. The new Simulink is saved with name

‘Example5_Park_transform.mdl’, where the suffix ‘.mdl’ means Simulink model.

Step 2 Creating a New MATLAB� Function which Calls the Simulink Model

A new MATLAB� file may be created by clicking ‘File’ and selecting ‘New’ in the

MATLAB� window. Enter the following code sequence and save it with the filename

‘Example5_Park_transform.m’.

Figure 3.54 ‘MATLAB Fcn’ block configuration.
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clear

sim(’Example5_Park_transform’,0.03);

Vas = x(:,1);

Vbs = x(:,2);

Vcs = x(:,3);

Ra = x(:,4);

t = tout;

A = size(x);

for i = 1:A(1);

Vds(i)= 2/3*[cos(Ra(i))’, cos(Ra(i)-2/3*pi)’, cos(Ra(i) + 2/3*pi)’]*

[Vas(i);Vbs(i);Vcs(i)];

Vqs(i) = 2/3*[sin(Ra(i))’, sin(Ra(i)-2/3*pi)’,

sin(Ra(i) + 2/3*pi)’]*[Vas(i);Vbs(i);Vcs(i)];

end

plot(t, Vds, ’blue’);

hold on;

plot(t, Vqs, ’red’);

In the file, ‘sim’ is aMATLAB� function which is used to simulate a Simulinkmodel. It takes

two parameters: one is name of the Simulink model (‘Example5_Park_transform’) and the

other is the simulation time (0.03 s).

Step 3 Running the MATLAB� Function of Example 3.5

In MATLAB� command line, type ‘Example5_Park_transform’ to run Example 3.5 and the

results are obtained automatically, as shown in Figure 3.57.

The simulation results shown in Figure 3.57 are same as the previous examples.

Figure 3.55 Simulink model of Example 3.5.
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Figure 3.56 Parameter configuration.

Figure 3.57 Simulation results of Example 3.5.

Modeling and Simulation of Induction Motor 71



www.manaraa.com

Example 3.6 Programming of Park’s Transformation by Calling ‘abc_to_dq0

Transform’ Block

In this example, a simulink model of Park’s transformation is built by employing the

block ‘abc_to_dq0 Transform’ in Simulink library. The block may be found from path

‘SimPowerSystem/Extra_Library/Measurements’. Drag the block into the Simulink model

as shown in Figure 3.58.

Figure 3.58 Simulink model of Park’s transformation using ‘abc_to_dq0’ block.

Figure 3.59 Descriptions of ‘abc_to_dq0 Transformation’ block.
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As shown in Figure 3.58, input of transformation reference in the block is ‘sin_cos’. In order

tomatch the input format, two trigonometric function blocks, ‘sin’ and ‘cos’ are used. Click the

‘abc_to_dq0 Transformation’ block to see the description as shown in Figure 3.59.

There are differences between the ‘abc_to_dq0’ transformation and the original Park’s

transformation by comparing Equation (3.26). Vd defined in the Simulink block is Vqs in the

original Park’s transformation while Vq defined in the Simulink block is Vds. In using the

‘abc_to_dq0’ block,Vd has to be interpreted asVqs in the original Park’s transformation andVq

has to be interpreted as Vds.

Figure 3.60 shows the simulation results of Example 3.6 which calls the ‘abc_to_dq0’ block.

Compared with Figure 3.50, it is seen that Vd lags Vds by 2/3p rad and Vq lags Vqs by the

same angle.

3.11 Summary

Based on the 8th and 11th fifth-order equations, the Simulink models of induction motor

presented in this chapter are useful for transient analysis of the induction motor. The current-

input model of induction motor involves the least amount of calculations and, hence, is

computationally efficient and can be used for the study of a current-controlled induction motor

drive system.Thevoltage-inputmodel is realized using thematrix calculation blocks and canbe

used for the study of a voltage-controlled induction motor drive system. The discrete-state

model uses an ‘S-function’ block with a short M-file (which consists of about twenty program

lines) to implement the discretefifth-order equationof a three-phase inductionmotor, giving the

most compact modeling form. Because the discrete-state model involves lengthy calculations

and gives accurate simulation results only when the sampling timeM is less than 0.8ms, a long

Figure 3.60 Simulation results of Example 3.6.
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program execution time is required. Each block of the models may be connected and modified

easily in the MATLAB�/Simulink environment. Some limit conditions, such as saturation of

magnetic circuit and stator current limit, may be easily inserted into the function blocks. The

object modeling methods of the current-input model and voltage-input model are convenient

because program compilation is not required. As a subsystem, the three models may be easily

incorporated into a sophisticated control system of the induction motor. The sinusoidal PWM

model and encoder model may be used to simulate a PWMgenerator and a speedmeasurement

device making the system model of the induction motor drive more realistic. Further work on

induction motor modeling may include: (1) incorporating more practical factors in the model,

such as magnetic saturation, temperature rise, motor vibration, and unbalanced parameters,

(2) automatically generating a computer model based onmeasured data of the actual induction

motor. This chapter has also provided a primer for readers to familiarize with the MATLAB�/

Simulink programming environment. The techniques introduced will be employed in the

intelligent control of induction motor drives detailed later in the book.
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4

Fundamentals of Intelligent
Control Simulation

4.1 Introduction

Computer simulation provides a fast way to verify new designs and improvements at the

algorithm level, without incurring hardware cost and possible device damage. Currently,

MATLAB� (The MathWorks, Inc., 2008a) software is an ideal tool for simulating most

intelligent control systems. A large number of function blocks have been developed in the

Simulink libraries (The MathWorks, Inc., 2008b) by Mathworks Inc. Various mathematical

operations, engineering models, and software tools are packaged into the blocks. With the aid

of these blocks, users can avoid repeated effort in modeling when verifying or developing a

custom design.

In this chapter, readers will learn how to model and simulate a fuzzy logic based PI

controller, neural network based Park’s transformation, signal measurement using Kalman

filter, and a genetic algorithm optimized PID controller using MATLAB�/Simulink. Control

System Toolbox, Fuzzy Logic Toolbox, Neural Network Toolbox, Signal Processing Blockset

in Simulink libraries will be employed for the simulation examples.

4.2 Getting Started with Fuzzy Logic Simulation

MATLAB� (version R2008b) delivers a ‘Fuzzy Logic Toolbox’ (The MathWorks, Inc.,

2008c). In the toolbox, a block named ‘Fuzzy Logic Controller’ may be used to simulate a

fuzzy logic controller in Simulink platform. The MATLAB� command ‘Fuzzy’ calls the FIS

(Fuzzy Inference System) editor that enables membership functions and fuzzy inference rules

to be input and edited. In this section, an example of fuzzy PI control system is presented.

4.2.1 Fuzzy Logic Control

A basic fuzzy inference system is described as shown in Figure 4.1.

The basic fuzzy inference system may be simulated in MATLAB�, and the operations are

summarized in Table 4.1.
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The steps of developing a fuzzy simulation model are shown in Figure 4.2.

Figure 4.2 shows the basic steps of developing a fuzzy inference system in MATLAB�/

Simulink. Firstly, the fuzzy inference system is created and its parameters are configured by the

‘FIS Editor’ of MATLAB�. Then, the fuzzy inference system is exported under MATLAB�

path with its own filename. After the filename is entered into a ‘Fuzzy Logic Controller’ block,

the fuzzy inference system may be called by the Simulink model.

Fuzzify
Input Fuzzy

reasoning
Defuzzify 

Output

FIS (fuzzy inference system) 

Figure 4.1 A basic fuzzy inference system.

Table 4.1 Operations of fuzzy inference system in MATLAB�.

Name Action Parameter Edit Window How to Enter

FIS (fuzzy

inference

system)

Fuzzy inference Membership

functions and

rulebase

FIS Editor Entering command

‘fuzzy’ on the

MATLAB� main

window

Fuzzify Map inputs to

membership

values

Input membership

function

Membership

Function

Editor

Enter from FIS

Editor window

(see Figure 4.9)

Fuzzy

reasoning

Fuzzy reasoning

based on fuzzy

rulebase and

if-then logic

Output

membership

function

FIS Editor/

Membership

Function

Editor

Enter from FIS

Editor window

(see Figure 4.9)

Fuzzy rulebase FIS Editor/Rule

Editor

Enter from FIS

Editor window

(see Figure 4.10)

Defuzzify Transfer fuzzy

values to crisp

outputs

N/A N/A N/A

Enter the filename 
into “Fuzzy Logic 
Controller” block in 
Simulink model 

Export the FIS 
with a file 
name under 
MATLAB® path 

Create and 
configure an 
FIS in “FIS 
Editor” 

Run the 
Simulink 
model 

Adjust rules No 

Satisfied ? 
Start

End
Yes

Figure 4.2 Steps of developing a fuzzy model in MATLAB�/Simulink.
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4.2.2 Example: Fuzzy PI Controller

An example of a basic fuzzy controller (Sousa and Bose, 1995) is presented in this section. The

purpose is to demonstrate the programming process of fuzzy logic simulation in MATLAB�/

Simulink. For comparison purpose the performance of a PI controller is also studied.

Step 1 Building a PI Control System in Simulink

API controller is described by the expression uðtÞ ¼ KpeðtÞþKi

Ð
eðtÞdt, where e(t) is input of

the controller, u(t) is output of the controller, Kp is the proportional gain, and Ki is the integral

gain. A Simulink model of PI control system may be constructed as shown in Figure 4.3.

The PI control system in Figure 4.3 consists of ‘Step’, ‘Add’, ‘Gain’, ‘Integrator’, ‘Transfer

Fcn’, and ‘Scope’ blocks. These blocks may be found in ‘Simulink Library’. The properties of

the blocks are summarized in Table 4.2. For example, the block ‘Step’ is used to generate a step

function from the Sources Group in the Simulink libraries. The ‘Transfer Fcn’ is provided in

e(t)

u(t) 1

s  +s+12

Transfer Fcn
Step

Scope

1

Kp

1

Ki

1
s

Integrator
Add1Add

Figure 4.3 A PI control system in Simulink.

Table 4.2 Simulation blocks in PI control system.

Block Functions Parameters Libraries/Group

Step Generate a step function Step time¼ 5 s Simulink/Sources

Initial value¼ 0

Final value¼ 1

Add Add or subtract inputs þ� Simulink/Math

Operations

þ þ
Gain Multiply input by

a constant

Proportional Gain¼ 1 Simulink/Math

Operations

Integral Gain¼ 1

Integrator Integrate signal N/A Simulink/Continuous

Transfer Fcn Transfer function Numerator coefficient¼ 1 Simulink/Continuous

Denominator

coefficient¼ [1 1 1]

Scope Display signals

generated during

simulation

Y_min¼� 0.5 Simulink/Sinks

Y_max¼ 1.5
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Continuous Group in the Simulink libraries. The parameters of the blocks may be set by

clicking the individual blocks.

Step 2 Running the Simulation for the PI Control System

After running the Simulink model of PI control system as shown in Figure 4.3, the simulation

results of controller command (dot line) and system output (solid line) are obtained as shown

in Figure 4.4.

The performance of the PI controller may be further optimized by tuning the proportional

gain Kp and the integral gain Ki.

Step 3 Fuzzy Logic Control Modeling in Simulink

In the previous PI controller, both the proportional gainKp and the integral gainKi are constant.

In order to improve the controller performance, the gains should be varied as e(t) varies. This is

accomplished by varying Kp and KI according to some fuzzy rules when the absolute value of

error of ‘Transfer Fcn’ block output and input command, e(t) (controller’s input) varies. For

example, the rules may be defined as follows:

If abs(e(t)) is large, then Kp is large and Ki is large.

If abs(e(t)) is small, then Kp is large and Ki is zero.

If abs(e(t)) is zero, then Kp is large and Ki is small.

A Simulink model of fuzzy PI control system is shown in Figure 4.5 and parameters of the

Simulink blocks are listed in Table 4.3.
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Figure 4.4 Simulation results of PI controller.
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Step 4 Configuring the Fuzzy Inference System in MATLAB�

After the command ‘Fuzzy’ is entered in the MATLAB� command window, a FIS (Fuzzy

Inference System) editor window will appear as shown in Figure 4.6.

1

s  +s+12

Transfer Fcn

Step

ScopeProduct1

Product

1
s

Integrator
Fuzzy Logic  
Controller

Add1
Add

|u|

Abs

Figure 4.5 Modeling fuzzy PI control system in Simulink.

Table 4.3 Simulation blocks in Fuzzy PI control system.

Name Function Libraries/Group Parameter

Abs Output absolute value

of input

Simulink/Math

Operations

N/A

Fuzzy Logic

Controller

Fuzzy inference system Fuzzy Logic Toolbox FIS file is ‘fis2’

Product Multiply the inputs Simulink/Math

Operations

Number of inputs is 2

Figure 4.6 FIS (Fuzzy Inference System) editor.
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There is only one input and one output in the newly opened FIS by default, whereas the

proposed fuzzy controller has two outputs, one for adjusting Kp and another for adjusting Ki.

One more output should thus be added. This is done by clicking ‘Edit’ on the FIS Editor and

selecting ‘Add Variable’ and ‘Output’, as shown in Figure 4.7.

After the above operation, a new output, ‘output2’, is added in the FIS editor as shown in

Figure 4.8.

Double-click any one input or output box in the ‘FIS Editor’. A ‘Membership Function

Editor’ window appears as shown in Figure 4.9.

The membership function of the input and output need to be configured manually in the

‘Membership Function Editor’ with parameter values given in Table 4.4.

Double-click the fuzzy rule box ‘Untitledmamdani’ in the center of the FIS editor to bring up

the ‘Rule Editor’ window as shown in Figure 4.10. Fuzzy inference rules may be configured

manually in the ‘Rule Editor’ with the contents in Table 4.5.

When the editing of the Fuzzy Inference System is completed, click the ‘File’ icon and export

the Fuzzy Inference System with a filename. The filename should match the parameter in the

‘FuzzyLogicController’ block as listed inTable 4.3. In this example, the filename is ‘fis2’.Also,

the file should be saved to currentMATLAB� paths, in order that it can be called by the Simulink

model of Fuzzy based PI controller as shown in Figure 4.5.

Step 5 Running the Simulation for the PI Controller and Fuzzy Controller

Run the Simulink model of the PI control system as shown in Figure 4.3 and the Simulink

model of the fuzzy PI control system as shown in Figure 4.5. The simulation results of PI

controller (dot line) and fuzzy controller (solid line) are displayed, as shown in Figure 4.11.

Figure 4.7 Adding an output variable in FIS editor.
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Figure 4.8 One output added in FIS editor.

Figure 4.9 Membership function editor.
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Figure 4.10 Rule editor.

Table 4.5 Fuzzy inference rules.

Rule No Conditions Actions

1 If input is zero abs(e(t)) is zero output1 is large and

output2 is small

Kp is large and KI is

small

2 If input is small abs(e(t)) is small output1 is large and

output2 is zero

Kp is large and KI is

zero

3 If input is large abs(e(t)) is large output1 is large and

output2 is large

Kp is large and KI is

large

Table 4.4 Parameters of membership function.

Membership Function Range Type Parameters

Input1 [0 1] Trimf [�0.5 0 0.5]

Output1 [0 1] Trimf [�0.5 0 0.5]

Output2 [0 1] Trimf [�0.5 0 0.5]
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The above simulation results show that the basic fuzzy controller presented gives better

performance than a conventional PI controller with fixed gains. It should be noted that

optimization of structure and parameters has not been performed on the fuzzy controller yet.

4.3 Getting Started with Neural-Network Simulation

MATLAB�/Simulink delivers a ‘Neural Network Toolbox’ and some learning functions for

simulating various neural networks (The MathWorks, Inc., 2008d). A neural network may be

built and trained in MATLAB� command line or in a graphic-guide window. In the toolbox,

various neuron transfer functions are packaged into blocks that can be dragged into a Simulink

block diagram for building a neural-network model. Alternatively, a neural-network model

may be built by entering appropriate commands into MATLAB� command window. In this

section, neural-network based Park’s transformation will be implemented by MATLAB�/

Simulink.

4.3.1 Artificial Neural Network

An artificial neural network consists of neurons and connection lines. A two-layer neural

network is shown in Figure 4.12, where layer 1 is also called the hidden layer and layer 2 is also

called the output layer. In a practical application, a network may have several layers each

having a different number and type of neurons.
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Figure 4.11 Performance of PI controller and fuzzy PI controller.
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A neuron consists of net weight (product operator), net bias (constant), net sum (add

operator), and a transfer function as shown in Figure 4.13. Parameters of a neuron are listed in

Table 4.6.

The weights and bias of neurons may be obtained by a training process as shown in

Figure 4.14.

The initial weights and biases for a back-propagation network may be created randomly.

Update equation of the weight and bias of neurons is given as:

Input Output 

layer 1 layer 2 

Figure 4.12 A two-layer network consisting of five neurons and connection lines.

+

Input 

Bias

Weight Transfer 
function 

Output 

neuron

Figure 4.13 Internal structure of artificial neuron.

Table 4.6 Parameters of an artificial neuron.

Name Properties Achieved by

Weight Scalar or vector gain Learning

Bias Scalar or vector constant Learning

Transfer function linear or nonlinear function Depends on function relationship

of input and output

84 Applied Intelligent Control of Induction Motor Drives



www.manaraa.com

wðtþ 1Þ ¼ wðtÞþ Z
qE

qwðtÞ : ð4:1Þ

wherew(tþ 1) is a vector of the newweight and bias,w(t) is a vector of the old weight and bias,

Z is learning rate, qE
qwðtÞ is gradient descent, andE is sum squared error of the output and the target

of the neural network as shown in Figure 4.14.

4.3.2 Example: Implementing Park’s Transformation Using ANN

Park’s transformation is also called a-b-c to d-q rotating transformation. With a rotating

reference angle, the three-phase variables in stationary frame are transferred to the rotating d-q

reference frame by Park’s transformation. In this example, Park’s transformation will be

implemented by a neural network.

Park’s transformation may be expressed as

Vd

Vq

2
4

3
5 ¼ 2

3

cos ðyÞ cos y� 2p
3

� �
cos yþ 2p

3

� �

sin ðyÞ sin y� 2p
3

� �
sin yþ 2p

3

� �

2
66664

3
77775

Va

Vb

Vc

2
66664

3
77775 ð4:2Þ

where Va, Vb, Vc, and y are the input vector, and Vd and Vq are the output vector.

Step 1 Design of Neural Network of Park’s Transformation

Equation (4.2) expresses a product of the transformation matrix and vector [Va, Vb, Vc].

Product operation is defined as an input function and no training is necessary in MATLAB�.

(Due to no suitable neuron support, training a product operation is difficult in MATLAB�.)

However, the transformation matrix may be implemented by a neural network with one input

(angle y) and six outputs (elements of the transformation matrix). The neural network thus

consists of four ‘tansig’ type neurons and six ‘purelin’ type neurons. Using the neural

network, the transformation matrix is implemented with a parallel calculation structure as

shown in Figure 4.15.

Park’s transformation in Equation (4.2)may be implemented by a product of [Va,Vb,Vc] and

the outputs of the neural network in Figure 4.15.

Target 

Adjust 
weight 
and bias 

Input Output 

Figure 4.14 Training process of neural network.
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Step 2 Acquiring Samples for Training Neural Network

ASimulinkmodel is designed to yield input and target sample sets which will be used to train a

neural network, as shown in Figure 4.16. In the model, ‘Repeating Sequence’ block outputs

repeating sequence with amplitude varying from zero to 4p rad and period equal to 2 s, which

yields the rotor angle y. The sample data of the rotor angle y is sent to workspace with name

‘sin_in’ as the neural network input. The six elements of the transformation matrix in

Equation (4.2) are given by six ‘sin’ and ‘cos’ blocks, separately, whose sample data are

stored to ‘Workspace’ with name ‘sin_out’ as the target of training neural network. The sample

rate is set as 0.001 s, so 1000 data pairs (input and target samples) are obtained by running the

model for 1 second. Further details of the blocks in the model are given in Table 4.7.

It is emphasized that the data in ‘sin_in’ and ‘sin_out’ blocks are stored with column formats

in the workspace, while input and target arrays of the network training function in MATLAB�

cos(θ )

sin(θ )

4 tansig 
neurons

6 purelin 
neurons

cos(θ -2π/3)

cos(θ+2π/3)

sin(θ -2π/3)

sin(θ+2π/3)

θ

Figure 4.15 Neural network of Park’s transformation matrix.

cos

sin

cos

sin

cos

sin

sin_in

To Workspace1

sin_out

To Workspace
Repeating
Sequence

2*pi/3

Constant1

-2*pi/3

Constant

Figure 4.16 Simulink model for acquiring samples.
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are in row formats. In order tomatch the network training function, the input and target samples

have to be transposed. This is achieved by entering the following commands:

>> sinin = sin_in’;

>> sinout = sin_out’;

Step 3 Creating a New Neural Network

After Step 2, the sample sets of input and target are stored in row format with the new names

‘sinin’ and ‘sinout’. Enter the following command to create a feed-forward backpropagation

network:

>> net = newff(sinin,sinout,4);

The parameters of the command are listed in Table 4.8.

Step 4 Training the Neural Network

Enter the following command in order to train the new network with name ‘net’:

>> [net,tr] = train(net,sinin,sinout);

The parameters of the command are listed in Table 4.9.

Table 4.7 Simulation blocks in Park’s transformation matrix.

Name Function Libraries/Group Parameter

Repeating

Sequence

Generate angle reference Simulink/Sources Time values [0,2]

Output values [0,4�pi]
Trigonometric Perform trigonometric

function

Simulink/Math

Operations

Sin

Cos

To Workspace Write data to MATLAB�

workspace

Simulink/Sinks Save format: Array

Simulation

parameters

Manage simulation process N/A Start time: 0 s

End time: 1s

Sample time: 0.001 s

Table 4.8 Parameters of a feed-forward backpropagation network.

Name Function

newff() Create a new feed-forward backpropagation network

default is ‘tansig’ for hidden layer and ‘purelin’ for output layer

net Name of new network

sinin Input of the network

sinout Output of the network

4 4 ‘tansig’ neurons in hidden layer

sinout is 6-dimension vector 6 ‘purelin’ neurons in output layer
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The training function will return new weight and bias values and these are stored in the

network ‘net’, while the training records are stored in ‘tr’. After entering the training command,

a ‘Neural Network Training’ window as shown in Figure 4.17 appears and a training process

starts automatically.

Table 4.9 Parameters for network training.

Name Function

train() create a new feed-forward backpropagation network

default transfer function is ‘tansig’

net Name of created network

sinin input of the network

sinout Train target

tr Store training records

Figure 4.17 Training window.
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After the training of network completed, clicking the ‘Performance’ box in the ‘Neural

Network Training’ windowmay display the epoch process as shown in Figure 4.18. If the result

is unsatisfactory, the training process may be repeated by entering the following commands

again until a satisfactory result is obtained:

>> net = newff(sinin,sinout,4);

>> [net,tr] = train(net,sinin,sinout);

It should be noted that the results are different for each training process because the initial

weight and bias of the network being trained are randomly created.

Step 5 Generating a Simulink Block of the Trained Neural Network

Enter the following command to generate a Simulink block for simulating the trained neural

network ‘net’ for further use:

>> gensim(net,-1);

where -1 means inherited sample time.

After entering the above command, a Simulink model is automatically created as shown in

Figure 4.19.

Figure 4.18 Network training performance: the mean squared error is less than 10�5 after 660

training epochs.
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Copy the ‘Neural Network’ block in Figure 4.19 and paste it into a new Simulink

model named as Park’s Transform as shown in Figure 4.20. In the model, the ‘Vabc’

block yields three phase voltage [Va, Vb, Vc] with frequency 60 Hz and magnitude 1 V.

The ‘Neural Network’ block yields Park’s transformation matrix. The ‘Matrix Product’

block implements product operation of [Va, Vb, Vc] and the Park’s transformation matrix

to give Vd and Vq.

Step 6 Running the Simulink Model

After running the Park_ANN model, ‘Scope2’ displays the three phase voltage [VaVbVc],

‘Scope3’displays the output of neuralwork based Park’s transformation, and ‘Scope1’displays

the voltage [VdVq] of rotating d-q reference frame. The simulation results are shown in

Figures 4.21–4.23.

4.4 Getting Started with Kalman Filter Simulation

By using recursive calculations, the Kalman filter is capable of estimating the state of a linear

dynamic system from a series of noisy measurements. In this section, the theory of the Kalman

filter is briefly reviewed. An example of signal measurement in the presence of noise will then

be presented to show how the Kalman filter can be modeled.

y{1}

Input 1 

x{1}

x{1}     y{1}

Neural Network

Figure 4.19 Creating a neural network by the command ‘gensim(net,-1)’.

Vabc

Scope3

Scope2

Scope1

Repeating
Sequence

x{1} y {1}

Neural Network

Vabc

Matrix

Vdq

Matrix Product

Figure 4.20 Simulink model of Park’s transformation.
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Figure 4.21 Three phase voltage [VaVbVc].
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Figure 4.22 Output of neural-network based Park’s transformation.
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4.4.1 Kalman Filter

A discrete state-space representation of a linear dynamic system with noises may be written in

the following form.
xn ¼ Axn�1 þBun�1 þw

yn ¼ Cxn þ v
ð4:3Þ

The discrete model may be constructed as a flowchart as shown in Figure 4.24.

u (input of system) and y (output of system) are the two input variables of a basic Kalman filter

and estimated state x and estimated y are the two output variables, as illustrated in Figure 4.25.

The equations of state estimation of the basic discrete Kalman filter may be expressed as

follows:

1. Prediction of state:

�xn ¼ Ax̂n�1 þBun�1 ð4:4Þ
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Figure 4.23 Voltage [VdVq] output of rotating d-q reference frame.

Ax n-1 +Bun-1 + w Delay Cx n + v 
y nu n-1 xn

Figure 4.24 Discrete model of a linear dynamic system.
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Prediction of error covariance matrix:

�Pn ¼ AP̂n�1A
T þQ ð4:5Þ

2. Computation of Kalman filter gain:

Kn ¼ �PnC
TðC�PnC

T þRÞ�1 ð4:6Þ
State estimation:

x̂n ¼ �xn þKnðyn�C�xnÞ ð4:7Þ
Update of the error covariance matrix:

P̂n ¼ �Pn�KnC�Pn ð4:8Þ
The recursive calculation process of the basic Kalman filter shown in Figure 4.26 is useful for

understanding the Kalman filter at work.

The definitions of symbols in the Kalman filter are listed in Table 4.10.

Ax +Bu + w Delay Cx + v 
yu x

Ax +Bu Delay Cx

Estimated y 

Predicted x

+
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Estimated  x 
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Figure 4.26 Kalman filter calculations.
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Figure 4.25 A system model and a basic Kalman Filter.
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4.4.2 Example: Signal Estimation in the Presence of Noise by Kalman Filter

In this example, measured random DC voltage accompanying various noises is estimated by a

Kalman filter in order to demonstrate how to simulate a Kalman filter using MATLAB�/

Simulink.

Step 1 Mathematical Model of the Signal Measurement

In processing measurement data, Kalman filter may be used to separate signal from random

noises (Kalman, 1960). In this example, it is reasonable to assume that the measured signal is

from a linear dynamic system with noises as described in Equation (4.3). If we assume that the

measured signal is same as the system state, then the measurement matrix C is equal to 1. The

measured data is a one-dimensional array, and the state has no change from step n� 1 to step n,

that is, xn¼ xn�1. Hence, the state transition matrix A is 1. There is no control input in the

system, hence u equals 0. The state-space representation in Equation (4.3) becomes

xn ¼ xn�1 þw

yn ¼ xn þ v
ð4:9Þ

Step 2 Modeling the Signal Measurement Process

MATLAB� software delivers a ‘Kalman Filter’ block in ‘Signal Processing Blockset’. The

block can simulate a simple Kalman filter action (The MathWorks, Inc., 2008e). In the

example, value of DC voltage is arbitrarily selected to be measured and it is accompanied by

randommeasurement noise. Mean of the noise is set as 0 and variance of the noise is set as 0.1,

hence themeasurement noise variance R is set as 0.1. Since onlymeasurement noise is injected

into theDC voltage in this example, the process noise covarianceQ is set as 0, exactly. It should

be noted that the noise covariance is unknown in practical measurements.

Table 4.10 Parameters of the Kalman filter.

Symbol Definition Initial Value Update

A State transition matrix Constant matrix No

B Input matrix Constant matrix No

C Measurement matrix Constant matrix No

K Kalman gain N/A Yes
�P Predicted error covariance N/A Yes

P̂ Estimated error covariance Matrix Yes

Q Process noise covariance Constant matrix No

R Measurement noise covariance Constant matrix No

u System input N/A Yes

v Measurement noise N/A N/A

w Process noise N/A N/A

x State N/A N/A

�x Predicted state N/A Yes

x̂ Estimated state Matrix Yes

y Measurement N/A Yes
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The simulation model is constructed in Simulink as shown in Figure 4.27 and the model

parameters as listed in Table 4.11.

Step

Scope3

Scope2

Scope1

Random
Number

Kalman
Filter

ZZ Z_est

Kalman Filter

Add

Figure 4.27 Simulink model of Kalman Filter for signal measurement.

Table 4.11 Parameters of blocks in Simulink model of Kalman filter.

Name Function Parameter Libraries/Group

Kalman Filter Estimating measured

signal under noise

condition

Initial estimated state¼ 0; Signal Processing

Blockset/Filtering/

Adaptive Filters

Initial estimated error

covariance¼ 1;

State transition matrix A¼ 1;

Process noise covariance Q¼ 0;

Measurement matrix C¼ 1;

Measurement noise

covariance R¼ 0.1

Step Generating a step

DC signal

Step time¼ 0 Simulink/Sources

Initial value¼ 0

Final value¼ 10

Random Number Generating a random

number to simulate

measurement noise

Mean¼ 0; Simulink/Sources

Variance¼ 0.1;

Seed¼ 0.

Scope 1 Show original signal

without noise

N/A Simulink/Sinks

Scope 2 Show estimated signal

by Kalman filter

N/A Simulink/Sinks

Scope 3 Show measured signal

with noise

N/A Simulink/Sinks

Parameters of

simulation

Manage simulation Fixed-step with

step size¼ 0.02

N/A

Start time¼ 0.0

Stop time ¼1
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To observe the output ofKalman filter in each iteration, the simulation step is set as 0.02 s and

the simulation time is set as 1 s. Thus, the simulation calculation will yield 50 measurement

samples and 50 outputs.

The parameter configuration window of the ‘Kalman Filter’ block is shown in Figure 4.28.

Step 3 Simulation of the Kalman Filter Based Signal Measurement

In a practical application, the measurement noise covariance Rmay be unidentified. Hence, R

may be arbitrarily set. To observe the convergence process of Kalman filter calculation in the

presence of various noises, the simulation is performed three times with the following

measurement noise covariances which are input into the ‘Kalman Filter’ blocks in each

simulation, separately.

R ¼ 0:1 ðtrue value of simulating the measurement systemÞ
R ¼ 0:001 ðarbitrary valueÞ
R ¼ 1 ðarbitrary valueÞ

Run the Simulink model shown in Figure 4.27. The simulation results are summarized in

Figures 4.29 and 4.30.

Figure 4.28 Configuring parameters of Kalman filter for the example.
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Figure 4.29 Simulation results: original voltage (solid line) and 50 measured samples (dots).
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Figure 4.30 Simulation results: original voltage (solid line) and estimated voltages by Kalman

filter in 50 iterations, with noise covariance R¼ 0.1 (dots), with R¼ 0.001 (crosses), and with R¼ 1

(asterisks).
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The simulation results show that Kalman filter has the ability to separate signal from random

noises. However, Kalman filter is sensitive to the measurement noise covariance R. Various R

values will result in different convergence results as shown in Figure 4.30. Because noise

covariance is usually unknown in practical applications, it will be of interest to investigate

further how the noise covariance in the Kalman filter can be tuned in order to yield the best

estimation result.

4.5 Getting Started with Genetic Algorithm Simulation

MATLAB� (version R2008b) delivers a ‘Genetic Algorithm and Direct Search Toolbox’ (The

MathWorks, Inc., 2008f). In the toolbox, the ‘ga’ function may be used to optimize a

MATLAB� function. In the toolbox User’s Guide, some MATLAB� functions are used as

GA’s fitness function and they can be optimized by the ‘ga’ function. In this section, an example

is presented to optimize a Simulink model by the ‘ga’ function.

4.5.1 Genetic Algorithm

Genetic Algorithm (GA) may be employed to optimize a model or a function. The model or a

function is called a fitness function in a GA optimization problem.

The basic steps of genetic algorithm are as follows.

Step 1 Start: Generate a random population of n chromosomes which have a proper form for

the problem.

Step 2 Run Fitness Function: Evaluate the fitness function using each chromosome in the

population.

Step 3 Result Test: Judge the n evaluated results. If conditions are satisfied, then GA stops and

outputs the best chromosome of current population.

Step 4 Selection: Select two or more parent chromosomes from a population according to

their fitness (the better the fitness of a chromosome, the greater is its chance of being

selected).

Step 5Crossover:With a crossover probability cross over the parents to form a newoffspring

(children). If no crossover was performed, the offspring is an exact copy of the parents.

Step 6Mutation:With a mutation probability mutate new offspring at each locus (position in

chromosome).

Step 7 Replace: Place new offspring in the old population to create a new population and use a

new generated population for a further run of the algorithm.

Step 8 Loop: Go to step 2.
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The calculation procedure of basic genetic algorithm may be summarized in Figure 4.31.

The parameters of genetic algorithm are listed in Table 4.12.

First
generation 

Generate random 
population of n
chromosomes 

Run fitness 
function

Selection Replace

Result test 
Pass

Fail

CrossoverMutation 

•
•
•

chromosome n

chromosome 2
chromosome 1

•
•
•

nevaluation n

evaluation 2
evaluation 1

Stop

Start

Next 
generation 

Figure 4.31 Calculation process of basic genetic algorithm.

Table 4.12 Parameters of genetic algorithm.

Name Function Input Output

Start Initialize n random

chromosomes

N/A First generation of

population has

n chromosomes

Run fitness

function

Evaluate fitness function n chromosomes n evaluated results

Result test Judge n evaluated results n chromosomes Pass or Fail

If conditions satisfied, then

stop

Selection Select good parent

chromosomes according to

rank of evaluation

n chromosomes Good chromosomes

Crossover Create new chromosomes Parent chromosomes Child chromosomes

Mutation Improve chromosomes Child chromosomes Improved child

chromosomes

Replace Create next generation of

population by replacing old

chromosomes

Child chromosomes

and parent chromosomes

n chromosomes of

next generation

of population
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4.5.2 Example: Optimizing a Simulink Model by Genetic Algorithm

This example demonstrates that a PID controller is optimized by Genetic Algorithm function

‘ga’ of MATLAB�when the control system is a Simulink model. In order to call the Simulink

model from MATLAB�, the Simulink model must first be built, and then a MATLAB�

programming function is used to call the Simulink model.

Step 1 Building a PID Control Model in Simulink

A Simulink model of PID (proportional–integral–derivative) control system is built as shown

in Figure 4.32.

This PID control system will be optimized by genetic algorithm. It is simulated by a ‘Zero-

pole’ block. A ‘Step’ block is used to create a control reference. An ‘Out1’ block is

used to export calculation results of the Simulink model. The Simulink model is saved with

the filename ‘PID_controller.mdl’. Parameters of the PID control system are listed in

Table 4.13.

1
Out1

1

s(s+1)

Zero-Pole
Step

Scope

PID

PID ControllerAdd

Figure 4.32 A Simulink model of PID control system.

Table 4.13 Parameters of Simulink model ‘PID_controller.mdl’.

Name Function Parameter

Plant Simulate a plant 1

sðsþ 1Þ
PID Controller Feedback control Kp¼ x1, Ki¼ x2, Kd¼ x3

Step Create control reference step time¼ 0

initial value¼ 0

and final value ¼10

Out1 Export calculation results of

the Simulink model

N/A

Simulation Parameters Manage simulation process Type of solver is Fixed-step

Fixed-step size 0.001 s

Start time 0.0 s

Stop time 10 s

100 Applied Intelligent Control of Induction Motor Drives



www.manaraa.com

Parameters of the PID controller consist of three variables, namely, proportional gain

Kp¼ x1, integral gain Ki¼ x2, and derivative gain Kd¼ x3, which are set in the ‘PID

Controller’ block as shown in Figure 4.33.

Step 2 Programming a Function to Run the Simulink Model

In order to call the Simulink model from MATLAB� platform, a MATLAB� function

‘Call_PID.m’ is programmed as follows.

function s = Call_PID(x)

assignin(’base’,’x1’,x(1));

assignin(’base’,’x2’,x(2));

assignin(’base’,’x3’,x(3));

[tout,xout,yout] = sim(’PID_controller’,10);

z = yout;

[m,n] = size(z);

V = 0;

R = 10; %command reference

for i = 1:m

V = V + (R-z(i))^2;

end

s = V/m;

end

In MATLAB�/Simulink, there two workspaces, one is named as ‘caller’ which stores

variable values of MATLAB� function. Another workspace is named as ‘base’ which stores

Figure 4.33 Configuration of PID parameters.
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variable values of input and output of Simulink model. Because the ‘ga’ function is a

MATLAB� function, an ‘assignin’ function is employed to transfer data in the two work-

spaces. In this way, the variable values may be exchanged between function ‘Call_PID.m’

and model ‘PID_controller.mdl’. Descriptions of the program Call_PID.m are listed in

Table 4.14.

Step 3 MATLAB� Programming of Genetic Algorithm

In the example, the fitness function is the Call_PID.m which calls Simulink model ‘PID_

controller.mdl’. The chromosome is the PID controller’s parameters [x1, x2, x3]. Parameters

of GA performance use default values of the ‘ga’ function which are listed in Table 4.15.When

the performance needs to be improved, the parameters may be changed by ‘gaoptimset’

function.

Table 4.14 Descriptions of Programming Call_PID.m.

Description Function Parameter

function

s¼Call_PID(x)

Function head x: input variable of function

s: output variable of function

Call_PID: function name

assignin Exchange variable value in

‘caller’ and ‘base’ workspaces

x1, x2, x3: variables in ‘base’ workspace

may be called by Simulink model

x: array in ‘base’ workspace used by

‘ga’ function

sim Perform a Simulink model Output: [tout,xout,yout]

PID_controller: Simulink model

10: simulation time (secs)

siz Calculating number of rows and

number of columns

input: a matrix

output: m is number of rows and n is

number of columns of the matrix

‘for’ cycle sentence

and s¼V/m sentence

Calculating mean square error of

the plant output and command

reference

s: output of Call_PID function

R¼ 10: command reference

Table 4.15 Elements of GA.

Elements of GA Representation Reference

Fitness function Call_PID.m Function Call_PID.m

Evaluate value Mean square error of Simulink model

output and command reference

Function Call_PID.m and

‘PID_controller.mdl’

Chromosome PID controller’s parameters x1, x2, and

x3 in Simulink model

Figure 4.33

GA parameters Default value See ‘Options of GA’ later
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Enter the following commands to run the simulation on genetic algorithm.

clc

clear

options = gaoptimset(@ga);

options = gaoptimset(options,’PlotFcns’,{@gaplotbestf},’Display’,

’iter’);

lb = [0 0 0];

ub = [100 100 100];

[x,fval] = ga(@Call_PID,3,[],[],[],[],lb, ub,[],options);

Descriptions of above commands are listed in Table 4.16.

Options of GA (Default)

options =

PopulationType: ’doubleVector’

PopInitRange: [2x1 double]

PopulationSize: 20

EliteCount: 2

CrossoverFraction: 0.8000

ParetoFraction: []

MigrationDirection: ’forward’

MigrationInterval: 20

MigrationFraction: 0.2000

Generations: 100

TimeLimit: Inf

FitnessLimit: -Inf

StallGenLimit: 50

StallTimeLimit: Inf

TolFun: 1.0000e-006

TolCon: 1.0000e-006

InitialPopulation: []

Table 4.16 Descriptions of commands to run genetic algorithm.

Command Function Parameter Ouput

clc Clear old commands N/A N/A

clear Clear old workspaces N/A N/A

gaoptimset() Get GA parameters @ga Default values

of options

gaoptimset() Change GA option,

Plot GA’s

optimizing process

options, ‘PlotFcns’,

{@gaplotbestf},

‘Display’, ‘iter’

New parameters

of options

lb Lower bound on x Lower bound of PID [0 0 0]

ub Upper bound on x Upper bound of PID [100 100 100]

ga() Perform GA @Call_PID: Fitness function x: chromosome

3: size of chromosome fval: value of the

fitness

function at x

Options: Plotting GA process
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InitialScores: []

InitialPenalty: 10

PenaltyFactor: 100

PlotInterval: 1

CreationFcn: @gacreationuniform

FitnessScalingFcn: @fitscalingrank

SelectionFcn: @selectionstochunif

CrossoverFcn: @crossoverscattered

MutationFcn: {[1x1 function_handle] [1] [1]}

DistanceMeasureFcn: []

HybridFcn: []

Display: ’final’

PlotFcns: []

OutputFcns: []

Vectorized: ’off’

UseParallel: ’never’

Step 4 Optimizing the PID Parameters by Genetic Algorithm

In order to compare the results of GA optimized PID controller, two simulations are first

performed with a random set x¼ [0.0310, 0.6467, 0.0563] and x¼ [5,5,5] and the simulation

results are shown in Figure 4.34.

Run the GA command set described in Step 3.

clc;

clear;

options = gaoptimset(@ga);

options = gaoptimset(options,’PlotFcns’,{@gaplotbestf},’Display’,

’iter’);

lb = [0 0 0];

ub = [100 100 100];

[x,fval] = ga(@Call_PID,3,[],[],[],[],lb, ub,[],options);

(a) (b)
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Figure 4.34 Two simulation results of PID control model. (a)With random PID parameter x¼ [0.0310,

0.6467, 0.0563]; (b) With x¼ [5,5, 5].
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Because initial chromosomes in the genetic algorithm are randomly created, the

program may need to be run several times in order to obtain satisfactory results. Figures 4.35

and 4.36 show that the best output is 1.997 with the final PID parameters x¼ [25.20,

0.045, 4.25].

Step 5 Improving the GA Performance Results

In order to improve the performance of the GA, several GA option parameters may be adjusted

with the following commands.
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Generation

F
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Best: 1.9975 Mean: 2.045

Figure 4.35 Best evaluated outputs of the fitness function at each generation.
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Figure 4.36 The final simulation output of Simulink model ‘PID_controller.mdl’ with the optimized

PID parameters x¼ [25.20, 0.045, 4.25] and the mean square error 1.997.
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1. Increase population size to 40 by command by entering

options = gaoptimset(options,’PopulationSize’,40);

2. Increase better individuals in old population to 10 that are guaranteed to survive to the next

generation by entering

options = gaoptimset(options, ’EliteCount’,10);

3. Decrease crossover fraction to 0.6 by entering

options = gaoptimset(options, ’CrossoverFraction’,0.6);

4. Increase generations to 140 by entering

options = gaoptimset(options, ’Generations’,140);

Insert the above four commands into GA run commands described in Step 3. The GA run

commands become:

clc

clear

options = gaoptimset(@ga);

options = gaoptimset(options,’PlotFcns’,{@gaplotbestf},’Display’,

’iter’);

options = gaoptimset(options,’PopulationSize’,40);

options = gaoptimset(options, ’EliteCount’,10);

options = gaoptimset(options, ’CrossoverFraction’,0.6);

options = gaoptimset(options, ’Generations’,140);
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Figure 4.37 Best and mean evaluated outputs of the fitness function at each generation.

106 Applied Intelligent Control of Induction Motor Drives



www.manaraa.com

options = gaoptimset(options,’MutationFcn’,@mutationadaptfeasible);

lb = [0;0;0];

ub = [60;10;10];

[x,fval] = ga(@Call_PID,3,[],[],[],[],lb, ub,[],options);

After running the above revised set of GA commands, better chromosomes (PID parameters)

are obtained as shown in Figure 4.37 and the evaluated output of the Simulink model

‘PID_controller.mdl’ is smaller, as shown in Figure 4.38.

The best output is 1.294 and the final PID parameters are x¼ [59.99, 0.03, 6.73].

By comparing Figure 4.37 with Figures 4.35 and 4.38 with Figure 4.36, we conclude that the

GA optimization result can be improved by adjusting the GA performance parameters. The

mean square error is decreased from 1.997 to 1.294.

4.6 Summary

The example of fuzzy PI controller illustrates how to start using ‘Fuzzy Logic Toolbox’ of

MATLAB�/Simulink. The example of neural network based Park’s transformation

demonstrates using a neural network of parallel calculation structure to implement

multi-output nonlinear functions. In the Kalman filter example, linear measured signal

is separated from random noises by the ‘Kalman Filter’ block of Simulink. It is also

demonstrated that the performance of the Kalman filter is sensitive to the measurement

noise covariance R. The example of genetic algorithm optimized PID controller illustrates

how to get started using the ‘ga’ function delivered by MATLAB� software. After working

through these four examples, the readers should have acquired the basic techniques of

intelligent control simulation.
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5

10

15

Time (s)

Figure 4.38 Simulation output of Simulink model ‘PID_controller.mdl’ with the final optimized PID

parameters x¼ [59.99, 0.03, 6.73] and mean square error 1.294.
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5

Expert-System-based Acceleration
Control1

5.1 Introduction

Conventional vector control of the induction motor includes field-oriented control (FOC) and

direct self control (DSC). In recent years, FOC and DSC have been applied to inverter-fed

induction motor drives for improving the transient response (Bose, 1986; Novotny and

Lipo, 1996). Although the implementation of both methods has largely been successful, they

both suffer from sensitivity to parameter variations and error accumulationwhen evaluating the

definite integrals (Shi et al., 1999). In both methods, the control must be continuous and

the calculation must begin from an initial state. If the control time is long, degradation in the

steady-state and transient responses will result due to drift in parameter values and excessive

error accumulation.

An expert system is a computer program that is designed to emulate a human’s skills in a

specific problem domain (George and William, 1989). As the forerunner among all the AI

techniques, expert systems have been researched since the early 1960s and have now become

themost important branch of artificial intelligence. Since then, expert systems have foundwide

applications in many areas. If an expert system is used as part of a feedback controller to

emulate the expertise of a human in performing control of plant, it is called ‘expert-system

control’ (Passino and Lunardhi, 1996a). Expert-system control was originally proposed by

A
�
str€om and Anton (1984) (A

�
str€om and Anton, 1984). Due to the complexity existing in many

real-world control problems, not all of them can be well represented, solved and implemented

1 (a) Portions reprinted from K.L. Shi, T.F. Chan, Y.K. Wong and S.L. Ho, “A new acceleration control scheme for an

inverter-fed induction motor,” Electric Power Components and Systems, 27(5), 527–554, � 1999, by permission of

Taylor & Francis Ltd, http://www.tandf.co.uk/journals

(b) Portions reprinted by permission of K.L. Shi, T.F. Chan, Y.K.Wong and S.L. Ho, “A rule-based acceleration control

scheme for an induction motor,” IEEE Transactions on Energy Conversion, 17(2), 2002: 254–259. � 2002 IEEE.

(c) Portions reprinted by permission of K.L. Shi, T.F. Chan, Y.K.Wong and S.L. Ho, “A rule-based acceleration control

scheme for an induction motor,” Proceedings of IEEE International Electric Machines and Drives Conference

(IEMDC ’99), pp. 613–615, Seattle, Washington, U.S.A. � 1999 IEEE.
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by the traditional mathematical methodologies and tools. Consequently, the applications of

human-like expert system in real-time dynamic control have been an attractive research area.

The core parts of expert-system control are the knowledge-base and the inference engine. The

knowledge base consists of facts and rules that characterize strategies on how to control the

plant. The inference engine is designed to emulate the control expert’s decision-making

process. In addition, an expert-system controller may have a user interface to interpret the

control process and to modify the knowledge base by a user. In this chapter, the expert-system

principle is employed to control the rotor acceleration of an inductionmotor, themain objective

being to overcome the drawbacks of commonvector control schemes.Based on the relationship

between stator voltage vector and rotor acceleration, a control method with voltage vector

comparison and voltage vector retaining is proposed to control the rotor acceleration. This

method uses a trial-and-error strategy to determine the best of seven voltage vectors in every

interval of the control process, which is then selected and retained. To decrease the number of

voltage vectors to be compared, the production knowledge base is modified by tracking the

angle of the stator current vector. After using the heuristic knowledge, the number of voltage

vectors compared is decreased to two, and the influence of sub-optimal voltage vectors is

reduced to a minimum. Fourteen rules represent the rotor acceleration control knowledge

and the inference engine based on a production system (Buchanan and Shortliffe, 1984; Hayes-

Roth, 1985) processes the rules in order to arrive at the desired control goals.

5.2 Relationship between the Stator Voltage Vector
and Rotor Acceleration

The usual vector controllers rely on flux calculations. Since flux is calculated from an integral

of input electrical energy, the controller cannot thoroughly eliminate the flux accumulation

error. However, by using rotor acceleration control instead of electromagnetic torque control,

flux calculations will no longer be needed. In practice, most of the inverters in use can

produce only seven discrete space vector values of actuating variables. Usually none of these

is exactly equal to the desired instantaneous value of the space vector. In the proposed rotor

acceleration controller, one voltage vector is selected in every period so as to decrease the

error between the actual rotor acceleration and the acceleration command. Because there is

no direct relationship between the rotor acceleration and the stator voltage vector, the

optimum voltage vector has to be selected by comparing the incremental acceleration

produced by every voltage vector. The formulations of incremental acceleration and stator

voltage vector are deduced as follows.

The dynamic equation of the mechanical system may be expressed as (Krause, Wasynczuk,

and Sudhoff, 1995):

g
doo

dt
¼ T�TL: ð5:1Þ

where g is the normalized mechanical time constant, TL is the load torque, and T is the

electromagnetic torque given by:

T ¼ lsm � iss: ð5:2Þ
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From Equations (5.1) and (5.2), the rotor acceleration is:

doo

dt
¼ 1

g
lsm � iss�TL

� �
: ð5:3Þ

The stator flux can be expressed as:

lsmðt0Þ ¼
ðt0
0

VðkÞ
s �Rsi

s
s

� �
dt ð5:4Þ

or

dlsm ¼ VðkÞ
s �Rsi

s
s

� �
dt: ð5:5Þ

When t > t0, the stator voltage vector V
ðkÞ
s determines the increment of the stator flux, dlsm,

which is shown in Figure 5.1.

If the rotor acceleration is denoted by a, then Equation (5.1) becomes

a ¼ doo

dt
¼ 1

g
ðT�TLÞ ð5:6Þ

The differential rotor acceleration is

da ¼ 1

g
dT�dTL½ � ð5:7Þ

From Equation (5.2),

dT ¼ dlsm � iss þ lsm � diss: ð5:8Þ

dλ2

dλ3

dλ4

dλ5

dλ6

dλ1

λsμ

Vs(3)

Vs(4)

Vs(5)
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2 2 
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Figure 5.1 Flux increment of induction motor. (Reproduced by permission of K.L. Shi, T.F. Chan, Y.K.

Wong and S.L. Ho, “A rule-based acceleration control scheme for an induction motor,” IEEE Transac-

tions on Energy Conversion, 17(2), 2002: 254–259. � 2002 IEEE.)
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Substituting Equations (5.5), (5.8) into (5.7),

daðkÞ ¼ 1

g
V ðkÞ
s �Rsi

s
s

� �
dt� iss þ lsm � diss�dTL

h i
: ð5:9Þ

Because iss � iss ¼ 0, Equation (5.9) becomes

daðkÞ ¼ 1

g
VðkÞ
s � iss

� �
dtþ lsm � diss�dTL

h i
ð5:10Þ

where k (mod(k)¼ 7) denotes one of the seven voltage vectors.

The incremental acceleration of the rotor is, from Equation (5.10),

DaðkÞ ¼ 1

g
VðkÞ
s � iss

� �
Dtþ lsm � Diss�DTL

h i
ð5:11Þ

DaðkÞ ¼ 1

g
Dt RojVðkÞ

s jjissjsin Wi þ lsm � Diss�DTL
h i

ð5:12Þ

where Ro is a unit vector.

Equation (5.12) explains that the stator voltage vector V
ðkÞ
s determines the incremental

accelerations of the rotor. When t > t0, the incremental accelerations that result from the six

stator voltage vectors are shown in Figure 5.2.

Two important results are obtained from Equation (5.12).

1. Incremental acceleration of the rotor is determined by the stator voltage vector.

2. IfDa(j)< 0, there is at least one numberm such thatDa( j þ m)> 0. IfDa( j)> 0, there is at

least one number n such that Da( j þ n)< 0.

According to these two results, a controller may be designed using a voltage vector comparison

and retaining method.
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Figure 5.2 Rotor acceleration increments of six stator voltage vectors. (Reproduced by permission of

K.L. Shi, T.F. Chan, Y.K. Wong and S.L. Ho, “A rule-based acceleration control scheme for an induction

motor,” IEEE Transactions on Energy Conversion, 17(2), 2002: 254–259. � 2002 IEEE.)
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5.3 Analysis of Motor Acceleration of the Rotor

An example is given to illustrate rotor acceleration controlled by stator voltage vectors. If two

stator voltage vectors are supplied to the motor in succession for t > t0, they will produce two

different accelerations of rotor as shown in Figure 5.3.

During t2 < t < t3, selecting and retaining the voltage vector V
ð1Þ
s that results in a larger

incremental acceleration of the rotor will produce a larger acceleration. This may be proved as

follows.

Let Dt ¼ t1�t0 ¼ t2�t1 ¼ t3�t2.

Then from Equation (5.11), the incremental acceleration of the rotor may be written as,

Da V ðkÞ
s ; issðxÞ

� �
¼ 1

g
Dt V ðkÞ

s

� �
� issðxÞþ lsm � Diss�DTL

h i
ð5:13Þ

where t0 < x < t0 þDt.
The rotor accelerations at instants t1, t2 and t3 are as follows:

aðt1Þ ¼ aðt0ÞþDa Vð1Þ
s ; issðx1Þ

� �
; t0 < x1 < t1 ð5:14Þ

aðt2Þ ¼ aðt1ÞþDa Vð2Þ
s ; issðx2Þ

� �
; t1 < x2 < t2 ð5:15Þ

a1ðt3Þ ¼ aðt2ÞþDa V ð1Þ
s ; issðx3Þ

� �
; t2 < x3 < t3 ð5:16Þ

a2ðt3Þ ¼ aðt2ÞþDa V ð2Þ
s ; issðx4Þ

� �
; t2 < x4 < t3: ð5:17Þ

Suppose issðx3Þ � issðx1Þ and issðx4Þ � issðx2Þ, then

a1ðt3Þ ¼ aðt2ÞþDa V ð1Þ
s ; issðx3Þ

� �
� aðt2ÞþDa Vð1Þ

s ; issðx1Þ
� �

ð5:18Þ
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Figure 5.3 Effect of applied voltage vector on rotor acceleration.
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a2ðt3Þ ¼ aðt2ÞþDa V ð2Þ
s ; issðx4Þ

� �
� aðt2ÞþDa Vð2Þ

s ; issðx2Þ
� �

: ð5:19Þ

If Da V
ð1Þ
s ; issðx1Þ

� �
> Da V

ð2Þ
s ; issðx2Þ

� �
, then a1ðt3Þ > a2ðt3Þ. In this case, if we wish to

increase the acceleration of the rotor during the subsequent time interval, the voltage vector

V
ð1Þ
s should be retained and the voltage vector V

ð2Þ
s should be discarded.

To find the optimum voltage vector at every period, a control strategy of voltage vector

comparison and voltage vector retaining is proposed.

5.4 Control Strategy of Voltage Vector Comparison and Voltage
Vector Retaining

In the proposed controlmethod, the time is divided intomany small intervals each consisting of

a voltage vector comparison period and a voltage vector retaining period. In the comparison

period, several voltage vectors are supplied to the induction motor in proper order, and the

incremental acceleration of each voltage vector is recorded. At the end of the comparison

period, the optimum voltage vector that produces a larger incremental acceleration is selected

for the retaining stage. In the latter stage, the controller retains this optimum voltage vector to

the motor. If the rotor acceleration is above or below a certain threshold during the voltage-

retaining period, a zero voltage vector is supplied. A cycle of the control process for the

induction motor is illustrated in Figure 5.4.

Three problems need to be solved before the proposed method can be applied directly to

control an induction motor. The first problem is how to assign the comparison time and retaining

time, as this will affect the results of control for the inductionmotor. The second problem is how

to select heuristically the voltage vectors to be compared, because too many voltage vector

comparisons will degrade the performance of the induction motor. The third problem is how to

compare the rotor acceleration, because the voltage vector of maximum rotor acceleration may

not be the optimum voltage vector. When the rotor accelerations produced by different voltage

vectors are compared, the maintenance of the current amplitude should also be considered.

Assign the comparison time and retaining time. To determine the appropriate cycle time,

a heuristic approach may be used. Because there are six nonzero voltage vectors supplied

during a revolution and the stator voltage vector rotation is faster than the rotor by the

asynchronous principle, the cycle time should be shorter than the time for the rotor to rotate

through 1/6 of a revolution. The cycle time should thus be shorter when the speed of rotor is

faster. By this heuristic, the cycle time may be fuzzily determined and adjusted by measuring

the rotor speed.

Strategy of selecting the voltage vectors to be compared. In order to decrease the number of

voltagevectors to be compared, amethod of selecting thesevoltagevectors heuristically is used

by tracking the angle of stator current vector. Equation (5.3) may be written as

doo

dt
¼ 1

g
jlsmjjissjsinji�TL

� �
: ð5:20Þ

When
doo

dt
¼ 0; ji do

dt
¼0

��� ¼ arcsin
TL

jlsmjjissj

( )
¼ j0 ð5:21Þ
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When
doo

dt
> 0;j0 < ji < p�j0 ð5:22Þ

When
doo

dt
� 0;�p�j0 � ji � j0 ð5:23Þ

After the actual acceleration of the rotor has been known, the angle range between the

stator current vector and the flux vector may be determined from Equations (5.22) and (5.23).

Once the actual angle of the stator current vector is detected, the flux angle range may

be estimated. Because the estimated angle range of the flux vector should not exceed p rad,

the incremental acceleration of the rotor can be determined by comparing only two voltage

vectors.

An example of voltage vector comparison based on the position of the stator current vector is

shown in Figure 5.5.When the rotor acceleration is larger than zero and the stator current vector

is in area 5, the flux lsm may be in area 2, 3, or 4 according to Equation (5.22). According to a

predictive (optimal) principle of current control (Nabae, Ogasawara, and Akagi, 1986), the

incremental current Di1, Di3, Di4, Di5 and Di6 are as shown in Figure 5.5.

From Equation (5.11) and Figure 5.5, when the rotor acceleration is larger than zero and the

stator current vector is in area 5, six rules may be summarized as follows:

C
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Time 

Time 

Time 
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(1) Retaining voltage Vs

(2)

Comparing period
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of rotor

Acceleration command 
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Retaining signal 

Zero voltage signal 
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(2) Vs

(3) Vs
(4) Vs

(5) Vs
(6)

Time 

Selecting signal 
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Retaining period

ath
ath amin 

amax 
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Figure 5.4 A cycle of voltage comparison and voltage retaining. (Reproduced by permission of K.L.

Shi, T.F. Chan, Y.K. Wong and S.L. Ho, “A rule-based acceleration control scheme for an induction

motor,” IEEE Transactions on Energy Conversion, 17(2), 2002: 254–259. � 2002 IEEE.)
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1. If Vs(5) is chosen, then the current amplitude and the rotor acceleration will be increased.

2. If Vs(6) is chosen, then the current amplitude will be maintained and the rotor acceleration

will be increased.

3. If Vs(1) is chosen, then the current amplitude will be decreased and the rotor acceleration

will be increased.

4. If Vs(3) is chosen, then the current amplitude will be decreased and the rotor acceleration

will be decreased.

5. If Vs(4) is chosen, then the current amplitude will be maintained and the rotor acceleration

will be decreased.

6. If Vs(0) is chosen, then the current amplitude and the rotor acceleration will be decreased.

The selection pattern of compared voltage vectors can be derived from the above six

rules. When the rotor acceleration command is larger than zero (a counterclockwise accelera-

tion command), the supply current should be maintained at a larger value, because a

positive torque is needed to accelerate the rotor. Hence, the compared voltage vectors should

be Vs(5) and Vs(6) and the voltage vectorsVs(1), Vs(2), Vs(3) and Vs(4) are discarded.When the

rotor acceleration command is less than zero (a clockwise deceleration command), magnitude

of the supply current should be maintained at a larger value, because a negative torque

is needed to decelerate the rotor. Hence, the compared voltage vectors should be Vs(5) and

Vs(4) and the voltage vectors Vs(1), Vs(2), Vs(3) and Vs(6) are discarded. When the rotor

acceleration command is equal to zero, the supply current should be maintained at a smaller

value. Hence, the compared voltage vectors should be Vs(5) and Vs(1) when rotor

speed command is larger than zero (a counterclockwise rotation command); or should be

Vs(5) and Vs(3) when rotor speed command is less than zero (a clockwise rotation command);

and the voltage vectors Vs(6), Vs(2), and Vs(4) are discarded. These selection patterns are

expressed in Table 5.1.
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Vs(3)

Vs(2)

Vs(1)

Vs(6)

Vs(5)
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6
Flux λs
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Δi6

Δi5

Δi4

Δi3 is

6

1

2
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5
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Figure 5.5 An example of selecting the voltages to be compared. (Reproduced by permission of K.L.

Shi, T.F. Chan, Y.K. Wong and S.L. Ho, “A rule-based acceleration control scheme for an induction

motor,” IEEE Transactions on Energy Conversion, 17(2), 2002: 254–259. � 2002 IEEE.)
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When stator current vector is in any area n, the general patterns of selecting the voltage

vectors to be compared can be summarized as follows:

1. If a� 	 0, and stator current vector is in area n, the compared voltage vectors are V
ðnÞ
s and

V
ðnþ 1Þ
s .

2. If a� 
 0, and stator current vector is in area n, the compared voltage vectors are V
ðnÞ
s and

V
ðn�1Þ
s .

3. If a� � 0,o*
o > 0, and stator current vector is in area n, the compared voltage vectors areV

ðnÞ
s

and V
ðnþ 2Þ
s .

4. If a� � 0,o*
o < 0, and stator current vector is in area n, the compared voltage vectors areV

ðnÞ
s

and V
ðn�2Þ
s .

Comparison strategy of rotor acceleration: According to the above rules, the amplitude

increment of stator current produced by V
ðnÞ
s is larger than V

ðnþ 1Þ
s , V

ðnþ 2Þ
s or V

ðn�1Þ
s when the

stator current vector is in area n. In order to maintain the amplitude of stator current, once the

rotor acceleration produced by V
ðnþ 1Þ
s or V

ðnþ 2Þ
s is larger than zero (for the case a� 	 0, or,

a� � 0 and o*
o > 0), or, V

ðn�1Þ
s or V

ðn�2Þ
s is less than zero (for the case a� 
 0, or, a� � 0 and

o*
o < 0), they should preferentially be selected as the retained voltage vector rather than V

ðnÞ
s .

The method of the voltage vectors comparison can be expressed as follows.

Da V
ðRÞ
s

� �
¼ max Da V

ðnÞ
s

� �
; ZDa V

ðnþ 1Þ
s

� �n o
when a* 	 0

Da V
ðRÞ
s

� �
¼ min Da V

ðnÞ
s

� �
; ZDa V

ðn�1Þ
s

� �n o
when a* 
 0

Da V
ðRÞ
s

� �
¼ max Da V

ðnÞ
s

� �
; ZDa V

ðnþ 2Þ
s

� �n o
when a* � 0 ando*

o > 0

Da V
ðRÞ
s

� �
¼ max Da V

ðnÞ
s

� �
; ZDa V

ðn�2Þ
s

� �n o
when a* � 0 ando*

o < 0

Table 5.1 Selection of the vectors to be compared according to rotor acceleration and speed commands.

a� Voltage vectors compared when stator current

vector is in area n¼ 5

Retained

voltage

vector

o*
o V

ð1Þ
s V

ð2Þ
s V

ð3Þ
s V

ð4Þ
s V

ð5Þ
s V

ð6Þ
s V

ð0Þ
s

a� 	 0 Yes Yes Yes

a� 
 0 Yes Yes Yes

a� � 0 Yes Yes Yes

o*
o > 0

a� � 0 Yes Yes Yes

o*
o < 0

(Reproduced by permission of K.L. Shi, T.F. Chan, Y.K.Wong and S.L. Ho, “A rule-based acceleration control scheme

for an induction motor,” IEEE Transactions on Energy Conversion, 17(2), 2002: 254–259. � 2002 IEEE.)
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Z is a preferential parameter that is larger than 1 to implement the preferential selection. A

satisfactory value of Z is 500 from the results of computer simulation. V
ðRÞ
s is the optimum

voltage vector that will be supplied in the retaining stage of the control process.

5.5 Expert-System Control for Induction Motor

The functions of an expert-system controller are to interpret plant outputs and reference inputs,

to reason about alternative control strategies, and to generate inputs in order to improve the

performance of the closed-loop system. An expert-system controller functionally works as

follows (A
�
str€om and Bj€orn, 1995; Passino and Lunardhi, 1996a):

1. Through the input interface, the controller receives information that is numerical (quanti-

tative) or linguistic (qualitative). Through the output interface, the controller sends

electrical signals to the plant.

2. Based on the real-time information received, a knowledge base and an inference engine

provide the decision making to control the system under an uncertain environment, such as

changes of noise, parameter, load, or power supply. The decision making can be achieved

just by tuning the parameters of the controller, changing the algorithm, or modifying the

control structure.

3. Monitoring performance faults, consulting with the control expert, and modifying the

knowledge base via a user interface. The knowledge-base modification based on consulta-

tion with the control expert can make the controller more flexible and adaptive than the

prototype controller.

The control system proposed consists of the expert-system controller, inverter, and induction

motor as shown in Figure 5.6.
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Figure 5.6 Induction motor control system with expert-system controller.
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The expert-system controller consists of a knowledge base, an inference engine, an input

interface, an output interface, and a user interface. The knowledge base includes a database and

a rulebase. The data can be separated into facts and goals. Examples of facts are statements such

as ‘acceleration is zero,’ and ‘in retaining period.’ An example of goals is ‘rotor acceleration is

between super-value and under-value.’ New facts can also be created by the rules. The rulebase

contains production rules of the type: ‘if premise then conclusion (action).’ The premise is the

fact or the goal of the database. The conclusion results in an action andmay add a new fact to the

database or modify an existing fact. In this way, the knowledge base can choose the most

appropriate strategy to control the induction motor. In collecting command input (rotor

acceleration command), induction motor output (rotor acceleration), and the inference engine

output (working state of controller), the inference engine is designed to emulate the control

expert’s decision-making process to operate the rules to arrive at the conclusion or to satisfy the

goals. The input interface implements the numerical and linguistic coding of electrical signals.

The output interface implements the transformation from the numerical values and linguistic

commands to electrical signals. In order to improve the performance of the prototype

controller, the user interface may be designed to monitor the performance faults, to consult

the control expert, and to modify the knowledge base of the controller.

The task of knowledge representation is to capture the essential features of a problemdomain

and make that information accessible to a problem-solving procedure. The rotor acceleration

control knowledge can be represented as 14 rules by the logical language, ‘if premise then
conclusion (action).’ At the beginning of the comparison period, the space region n of

stator current vector is detected. Then, depending on the rotor acceleration command, two

voltage vectors are supplied to the induction motor in succession, and the corresponding

rotor accelerations are obtained from the speed sensor. By comparing the two accelerations,

the optimum voltage vector is obtained and is held constant in the next period (retaining

period).

In the comparison period, the control knowledge is expressed as 10 rules as follows.

1. If in comparison period (denote as E) and comparison voltage vectors have not been

input (denote as :H),
then to detect the region of stator current space vector (denote as n¼ i).

2. If in comparison period (E), rotor acceleration command is much larger than zero (A1),

and comparison voltage vectors have not been input (:H),
then supply Vs(n) and Vs(n þ 1) to induction motor in succession (X1).

3. If in comparison period (E), rotor acceleration command is near zero (A2), and

comparison voltage vectors have not been input (:H),
then supply Vs(n) and Vs(n þ 2) to induction motor in succession (X2).

4. If in comparison period (E), rotor acceleration command is much less than zero(A3), and

comparison voltage vectors have not been input (:H),
then supply Vs(n) and Vs(n� 1) to induction motor in succession (X3).

5a. If in comparison period (E), rotor acceleration command is much larger than zero (A1),

comparison voltage vectors have been input (H), and Da(Vs(n))> ZDa(Vs(nþ 1)) (B1),

then Vs(n) is supplied to induction motor and is retained (k¼ n, Vs(k), counter t¼ 0).

5b. If in comparison period (E), rotor acceleration command is near zero (A2), comparison

voltage vectors have been input (H), and Da(Vs(n))> ZDa(Vs(nþ 2)) (B3),

then Vs(n) is supplied to induction motor and is retained (k¼ n, Vs(k), counter t¼ 0).
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5c. If in comparison period (E), rotor acceleration command is much less than zero (A3),

comparison voltage vectors have been input (H), and Da(Vs(n))< ZDa(Vs(n� 1)) (B5),

then Vs(n) is supplied to induction motor and is retained (k¼ n, Vs(k), counter t¼ 0).

5d. If in comparison period (E), rotor acceleration command is near zero (A2), comparison

voltage vectors have been input (H), and Da(Vs(n))< ZDa(Vs(n� 2)) (B7),

then Vs(n) is supplied to induction motor and is retained (k¼ n, Vs(k), counter t¼ 0).

6. If in comparison period (E), rotor acceleration command is much larger than zero(A1),

comparison voltage vectors have been input (H), and Da(Vs(n))� ZDa(Vs(n þ 1)) (B2),

then Vs(n þ 1) is supplied to induction motor and is retained (k¼ n þ 1, Vs(k), counter

t¼ 0).

7. If in comparison period (E), rotor acceleration command is near zero (A2), o*
o > 0 (F),

comparison voltage vectors have been inputted (H), and Da(Vs(n))� ZDa(Vs(n þ 2)) (B4),

then Vs(n) is supplied to induction motor and is retained (k¼ nþ 2, Vs(k),

counter t¼ 0).

8. If in comparison period (E), rotor acceleration command is near zero (A2),o*
o < 0 (:F),

comparisonvoltagevectors have been inputted (H), andDa(Vs(n))� ZDa(Vs(n� 2)) (B8),

then Vs(n) is supplied to inductionmotor and is retained (k¼ n� 2, Vs(k), counter t¼ 0).

9. If in comparison period (E), rotor acceleration command is much less than zero (A3),

comparison voltage vectors have been input (H), and Da(Vs(n))� ZDa(Vs(n� 1)) (B6),

then Vs(n) is supplied to induction motor and is retained (k¼ n� 1, Vs(k), counter t¼ 0).

In the voltage vector retaining period, the voltage vector supplied is unchanged if the rotor

acceleration is within the range (amin, amax), where amin¼ a� � ath and amax¼ a� þ ath, a
� is

the rotor acceleration command and ath is a specified threshold value (Figure 5.4). When the

rotor acceleration is larger than amax and if the rotor acceleration command is larger than zero,

then a zero voltage vector is supplied; if the rotor acceleration command is less than zero, then

optimumvoltagevector is supplied.When the rotor acceleration is less than amin and if the rotor

acceleration command is less than zero, then zero voltage vector is supplied; if the rotor

acceleration command is larger than zero, then the optimum voltage vector is supplied.

In the retaining period, the control knowledge is therefore expressed as five rules as follows.

10a. If in retaining period (denote as:E), rotor acceleration command ismuch larger than zero

(denote as A1), zero voltage vector is supplied (denote as C1), and rotor acceleration is

larger than amax (Figure 5.4) (denote as D1),

then the zero voltage vector is kept (Vs(k), k¼ 0).

10b. If in retaining period (:E), rotor acceleration command is much less than zero (A3), zero

voltage vector is supplied (C1), and rotor acceleration is less than amin (D3),

then zero voltage vector is supplied (Vs(k), k¼ 0).

11a. If in retaining period (:E), rotor acceleration command is much larger than zero (A1),

nonzero optimum voltage vector is supplied (C2), and rotor acceleration is larger than

amax (D1),

then the nonzero voltagevector is recorded inm (m¼ k, k¼ 0), and zero voltage vector is

supplied (Vs(k)).

11b. If in retaining period (:E), rotor acceleration command is much less than zero (A3),

nonzero optimum voltage vector is supplied (C2), and rotor acceleration is less than

amin (D3),
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then the nonzero voltagevector is recorded inm (m¼ k, k¼ 0), and zero voltage vector is

supplied (Vs(k)).

12. If in retaining period (:E), rotor acceleration is between amax and amin of reference value

(D2),

then voltage vector supplied (the optimum voltage vector or zero voltage vector) is

unchanged (Vs(k)).

13a. If in retaining period (:E), rotor acceleration command is much larger than

zero(A1), zero voltage vector is supplied (C1), and rotor acceleration is less than

amin (D3),

then the optimum voltage vector is restored and supplied (k¼m, Vs(k)).

13b. If in retaining period (:E), rotor acceleration command is much less than zero (A3), zero

voltage vector is supplied (C1), and rotor acceleration is larger than amax (D1),

then the optimum voltage vector is restored and supplied (k¼m, Vs(k)).

14a. If in retaining period (:E), rotor acceleration command is much larger than zero (A1),

nonzero optimum voltage vector is supplied (C2), and rotor acceleration is less than amin

(D3),

then the optimum voltage vector supplied is unchanged (Vs(k)).

14b. If in retaining period (:E), rotor acceleration command is much less than zero (A3),

nonzero optimum voltage vector is supplied (C2), and rotor acceleration is larger than

amax (D1),

then the optimum voltage vector supplied is unchanged (Vs(k)).

The detailed algorithm of the expert-system acceleration control for an induction motor is

given in APPENDIX D.

A typical sequence of the expert-system acceleration control is illustrated in Table 5.2.

Table 5.2 A typical sequence of the expert-system acceleration control.

Iteration No. Working memory Conflict Set Rule fired Remarks

i A1^:E^ D1^C2 11 11 Modify database m¼ k, k¼ 0

i þ 1 :E^D2 12 12 Retaining voltage vector

i þ 2 A1^:E^ D3^C1 13 13 Modify database k¼m

i þ 3 E^:H 1,2,3,4 1 Modify database n¼ i

i þ 4 E^A1^:H 2 2 Input comparing voltage vectors

i þ 5 E^A1^H^B1 6 6 Modify database k¼ n þ 1, t¼ 0

i þ 6 :E^D3^C2 14 14 Keep voltage vector

i þ 7 :E^D2 12 12 Retaining voltage vector

i þ 8 :E^D1^C2 11 11 Modify database m¼ k, k¼ 0
..
. ..

. ..
. ..

. ..
.

i þ k S Halt Motor stops

(Reproduced by permission of K.L. Shi, T.F. Chan, Y.K.Wong and S.L. Ho, “A rule-based acceleration control scheme

for an induction motor,” IEEE Transactions on Energy Conversion, 17(2), 2002: 254–259. � 2002 IEEE.)
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5.6 Computer Simulation and Comparison

Five computer simulation examples are presented to prove the feasibility of expert-system

based control. In the first example, the performance of an inverter-fed inductionmotor driving a

constant torque load is investigated. The simulation results of DSC and the proposed expert-

system controller are compared. The second example compares the robustness of the two

controllers. The third example verifies that the expert-system controller has exchangeability,

that is, the same controller can be used for different induction motors. The fourth example

demonstrates that the expert-system controller can work in a very low speed range. The fifth

example simulates the expert-system controllerworkingwith an encodermodel and establishes

that the encoder should have a minimum required precision. A computer simulation of the

expert-system acceleration controller is implemented using MATLAB�/Simulink software as

shown in Figure 5.7.

The simulation model of the acceleration controller consists of a ‘Current vector’ block, a

‘Commands’ block, a ‘Time control signal’ block, an ‘Acceleration selection’

block, a ‘Deceleration selection’ block, a ‘Voltage select 1’ block, a ‘Voltage select 2’ block,

1

out_1

Votage hold

Voltage 
Select 2

Voltage 
Select 1

Time control signal

Switch
Deceleration 

selection

Current
vector

Commands

Acceleration 
selection

3

Rotor
speed

2

Stator
current

1

Rotor
acceleration

Figure 5.7 Simulink model of the expert-system acceleration controller.
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a ‘Switch’ block, and a ‘Voltage hold’ block. The inputs of the model are the rotor acceleration

a (which may be obtained from the rotor speed by a differential calculation), stator

current is, and rotor speed signal o. The output is the stator voltage vector supplied to the

induction motor.

The ‘Current vector’ block (which stores the expert-system rule 1) transfers the stator current

into current vector. The ‘Commands’ block issues rotor speed commando�, rotor acceleration
command a�, and rotor acceleration error Da. The ‘Time control signal’ block generates time

control signals of the comparison period and retaining period. The ‘Acceleration selection’

block and ‘Deceleration selection’ block implement the rotor acceleration/deceleration

comparisons and selections. The ‘Voltage select 1’ block (which stores the expert-system

rules 2, 3, 5a, 5b, 6, 7, 8) issues comparison voltage vectors according to rotor acceleration

command. The ‘Voltage select 2’ block (which stores rules 4, 5c, 5d, 9) issues comparison

voltage vectors according to the deceleration command. The ‘Switch’ block is used to switch

control signals of the rotor acceleration and deceleration. The ‘Voltage hold’ block (which

stores rules 10–14) generates and retains stator voltagevector signals according to the results of

the rotor acceleration/deceleration comparisons and selections.

5.6.1 The First Simulation Example

This example is a comparison of DSC and the expert-system controller in respect of rotor

acceleration, torque, current, and flux. The induction motor parameters chosen for the

simulation studies are listed in ‘Motor 1’ of Appendix B, and the load torque is 20 Nm.

Speed command:

o*
o ¼ 40ðrad=sÞ 0 s � t < 0:4 s

o*
o ¼ 20ðrad=sÞ 0:4 s � t < 0:8 s

Rotor acceleration command:

a* ¼ 300ðrad=s2Þ o*
o ¼ 40 ^ oo < 40

a* ¼ 0ðrad=s2Þ o*
o ¼ 40 ^ oo ¼ 40

a* ¼ �300ðrad=s2Þ t � 0:4 s ^ oo > 20

a* ¼ 0ðrad=s2Þ o*
o ¼ 20 ^ oo ¼ 20

Figure 5.8a, Figure 5.9a, Figure 5.10a, and Figure 5.11a are the simulation results for the

expert-system controller. Figure 5.8b, Figure 5.9b, Figure 5.10b, and Figure 5.11b are the

simulation results for the DSC controller.

As shown in the above figures, the responses of speed, torque and rotor acceleration of the

two controllers are almost the same.With the proposed controller, however, oscillations in rotor

acceleration and torque are produced during the transition period. Although the flux is not

directly controlled by the proposed scheme, the stator current and flux do not deviate

significantly from the corresponding curves of DSC.
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Figure 5.8 (a) Rotor speed response of expert-system controller; (b) Rotor speed response of DSC.

(Reproduced by permission of K.L. Shi, T.F. Chan, Y.K. Wong and S.L. Ho, “A rule-based acceleration

control scheme for an induction motor,” IEEE Transactions on Energy Conversion, 17(2), 2002:

254–259. � 2002 IEEE.)
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Figure 5.9 (a) Controlled acceleration and torque response of expert-system controller; (b) Accelera-

tion response and controlled torque ofDSCcontroller. (Reproduced by permission ofK.L. Shi, T.F. Chan,

Y.K. Wong and S.L. Ho, “A rule-based acceleration control scheme for an induction motor,” IEEE

Transactions on Energy Conversion, 17(2), 2002: 254–259. � 2002 IEEE.)
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Figure 5.10 (a) Stator current vector of expert-system controller, time¼ 0 s� 0.15 s; (b) Stator current

vector of DSC, time¼ 0 s� 0.13 s. (Reproduced by permission of K.L. Shi, T.F. Chan, Y.K. Wong and

S.L. Ho, “A rule-based acceleration control scheme for an induction motor,” IEEE Transactions on

Energy Conversion, 17(2), 2002: 254–259. � 2002 IEEE.)
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5.6.2 The Second Simulation Example

Let ~i
s

s ¼ issþn (~i
s

s: current with noise, iss: current, n: sensor noise). Substituting
~i
s

s to Equa-

tion (5.4)which isDSCflux calculationmodel (Takahashi andNoguchi, 1986), Equation (5.24)

may be obtained and the flux error may be calculated by Equation (5.25).

lsmðt0Þ ¼
ðt0
0

ðVðkÞ
s �Rs

~i
s

sÞdt ¼
ðt0
0

ðV ðkÞ
s �Rsi

s
sÞdt�

ðt0
0

Rsndt ð5:24Þ

Dlsmðt0Þ ¼
ðt0
0

Rsndt ð5:25Þ

When the control time is long, it is difficult to ensure that there is no noise source of nonzero

mean value in a practical control system (Engberg and Larsen, 1995). Accumulation of flux

error in DSC may be produced by a current sensor noise with nonzero mean value.

In order to verify the robustness of the new controller to load changes and noise, an

oscillating load is applied to the motor and a drift noise (nonzero mean value) is added to the

current.

Figure 5.12a shows that the expert-system controller has good noise immunity and

effective control is obtained over a long period of time. On the other hand, DSC is sensitive

to the noise and the load. At t¼ 2 s, the motor speed drops to zero and the controller fails

(Figure 5.12b).

It has been said that DSC can achieve an instantaneous torque response. However, this is

true only when the integral calculation of flux does not have excessive error accumulation

over a long period. When an excessive error accumulation (such as that created by noise)

occurs, the instantaneous torque response is not assured and the error would not be corrected,

as shown in this simulation example. Since the new expert-system controller does not
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Figure 5.11 (a) Primary flux vector of expert-system controller, time¼ 0 s� 0.15 s; (b) Primary flux

vector of DSC, time¼ 0 s� 0.13 s. (Reproduced by permission of K.L. Shi, T.F. Chan, Y.K. Wong and

S.L. Ho, “A rule-based acceleration control scheme for an induction motor,” IEEE Transactions on

Energy Conversion, 17(2), 2002: 254–259. � 2002 IEEE.)
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require the calculation of integrals, the control is more effective and accurate over a longer

period than DSC.

5.6.3 The Third Simulation Example

Because the expert-system controller is independent ofmotor parameters, the third examplewill

verify that the new controller has exchangeability when it is used for different inductionmotors.

When the expert-system controller is used to control a 0.75 kW induction motor, only the

inverter needs to be changed. The controller is the same as that used for the 7.5 kW induction

motor in the first simulation example. The 0.75 kW induction motor parameters chosen for the

simulation studies are listed in ‘Motor 2’ of Appendix B with load 2 Nm. The speed command

and the rotor acceleration command are the same as the first simulation example.

The simulation results shown in Figure 5.13a and b are almost the same as those obtained

from the 7.5 kW induction motor in the first simulation example.
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Figure 5.12 (a) Expert-system controller with drift noise and oscillating load; (b) DSC controller with

drift noise and oscillating load. (Reproduced by permission of K.L. Shi, T.F. Chan, Y.K. Wong and S.L.

Ho, “A rule-based acceleration control scheme for an induction motor,” IEEE Transactions on Energy

Conversion, 17(2), 2002: 254–259. � 2002 IEEE.)
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Figure 5.13 (a) Speed and torque of 0.75 kW induction motor with expert-system controller;

(b) Controlled rotor acceleration of 0.75 kW induction motor with expert-system controller.
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When the expert-system controller is applied to control a 0.147 kW induction motor (model

295, Bodine Electric Company), only the inverter needs to be changed. The controller is the

same as that used for the 7.5 kWinductionmotor in the first simulation example. The 0.147 kW

induction motor parameters chosen for the simulation studies are listed in ‘Motor 3’ of

APPENDIX B with load 1 Nm. The speed command and the rotor acceleration command

are the same as the first simulation example. Figure 5.14 shows stator voltage and current

of the 0.147 kW induction motor. Figure 5.15 shows controlled rotor acceleration and

torque responses of the induction motor, while Figure 5.16 shows rotor speed response of

the induction motor.

The controlled rotor acceleration, torque response, and speed response shown in

Figures 5.15 and 5.16 are almost the same as those obtained from the 7.5 kW induction

motor in Figures 5.8a and 5.9a of the first simulation example and from the 0.75 kW

induction motor in Figure 5.13a and b.

5.6.4 The Fourth Simulation Example

The fourth simulation example will demonstrate that the expert-system controller can work

very well in very low speed range. The same 0.147 kW induction motor (Bodine Electric

Company model 295) is used and all the simulation parameters and conditions are the same
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Figure 5.14 Stator voltage and current of 0.147 kW induction motor.
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Figure 5.15 Controlled rotor acceleration and torque response of 0.147 kW induction motor.
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those in third simulation example, except that the speed command is reset. Figure 5.17 shows

the controlled acceleration and torque response of the 0.147 kW induction motor with the

expert-system controller when the speed command is set as 6 rad/s and �6 rad/s, while

Figure 5.18 shows the rotor speed response of the induction motor.
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Figure 5.16 Speed response of 0.147 kW induction motor.
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Figure 5.17 Controlled rotor acceleration and torque response of 0.147kW induction motor when speed

command is 6 rad/s and �6 rad/s.
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Figure 5.18 Speed response of 0.147 kW induction motor when speed command is 6 rad/s and �6 rad/s.
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Figure 5.19 shows controlled acceleration and torque response of the 0.147 kW induction

motorwith the expert-system controller when the speed command is set as 1 rad/s and�1 rad/s,

while Figure 5.20 shows the rotor speed response of the induction motor.

5.6.5 The Fifth Simulation Example

The fifth simulation example demonstrates rotor speed responses of the expert-system

acceleration controller working with speed encoders of various encoder precisions. The

simulation program consists of the encoder and decoder models built in Chapter 3, the

0.147 kW voltage-input model of induction motor built in Chapter 3, and the expert-system

controller model in Figure 5.7. The motor parameters are listed in ‘Motor 3’ of Appendix B

and the speed command is from 0 rad/s to 40 rad/s. The encoder model receives rotor speed of

the inductionmotormodel and outputs speed code strings to the decodermodel, while output of

the decoder model is sent to the expert-system controller as rotor speed signal. Figure 5.21

shows the rotor speed responses of the induction motor with and without the encoder and

decoder models, the encoder precision being set as 2000 pulses/revolution.
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Figure 5.19 Controlled rotor acceleration and torque response of 0.147 kWinductionmotorwhen speed

command is 1 rad/s and �1 rad/s.
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Figure 5.20 Speed response of 0.147 kWinductionmotorwhen speed command is 1 rad/s and�1 rad/s.
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The rotor speed response with encoder and decoder models is different from the speed

response without encoder and decoder models, because an encoder of lower precision can

decrease control precision of the expert-system controller.

Figure 5.22 show the rotor speed responses of the induction motor with and

without the encoder and decoder models, the encoder having a precision of 20 000 pulses/

revolution.

Figure 5.23 shows the rotor speed responses of the induction motor with and without the

encoder and decoder models, the encoder now having a resolution of 200 000 pulses/

revolution.

Figures 5.21–5.23 show that the encoder’s precision is extremely important for the

expert-system acceleration controller. When the encoder precision is up to 200 000 pulses/

revolution, the expert-system controller can have a good performance. Therefore, a high

precision encoder, such as an expensive Gurley Model 8435H hollow-shaft optical encoder
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Figure 5.21 Speed responses of 0.147 kW inductionmotor with and without an encoder of 2000 pulses/

revolution.
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Figure 5.22 Speed responses of 0.147 kW induction motor with and without an encoder of 20 000

pulses/revolution.
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with 900 000 counts/revolution is needed for hardware implementation of the expert-system

acceleration controller.

5.7 Summary

The expert-system based control scheme of induction motor is quite different from the usual

vector control schemes that depend on flux and torque calculations. Due to the use of inference

instead of algebraic calculations, the expert-system controller has a small control error but no

cumulative error. Another valuable property is that the controller is independent of the

parameters of the induction motor, so the same controller can be used for different induction

motors. Lastly, the control may be performed at any time, whereas conventional vector control

must be performed from an initial state. Since the expert-system algorithm consists mainly of

logic operations, the execution time of the control algorithm should be shorter than that of the

conventional vector-control algorithm. But, since the rotor acceleration values are obtained by

a differential operation on the angular speed, a high precision encoder is needed and control

error may be produced by the noise present in the signal from the speed encoder.

Expert system is an effective method for induction motor control. It is envisaged that more

and more advanced induction motor drives will be controlled using AI principles and

algorithms (Bose, 1993; Passino, 1996b). The possible developments of the expert-system

based acceleration controller are: (1) to systematize further the principle of rotor acceleration

control, (2) to optimize further the control rules and algorithms, (3) to tackle the problem of

noise in the measured rotor acceleration, and (4) DSP based hardware implementation with a

high-precision speed sensor.
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6

Hybrid Fuzzy/PI Two-Stage
Control1

6.1 Introduction

Field orientation principle is one of themost promisingmethods to achieve high performance in

adjustablespeedinductionmotordrives(Bose,1993).But,duetothedependenceofperformance

on the motor parameters and the complicated calculations involved, accurate vector control is

difficult to implement in practice. Two features of field-oriented control, however, deserve

attention.Firstly,althoughthefield-orientedcontrollerdoesnotcontrol thefrequencydirectly, its

supply frequency does change and its slip frequency is constant during the acceleration/

deceleration period. Secondly, when the torque command is constant, the supply current

magnitude will remain constant. The first feature may be proved by noting the relationship

between the supply frequency o, the slip frequency or, and the rotor angular speed oo:

o ¼ or þ P

2
oo: ð6:1Þ

1 (a) Portions reprinted by permissionofK.L. Shi, T.F.Chan andY.K.Wong, “Anovel two-stage speed controller for an

induction motor,” The 1997 IEEE Biennial International Electrical Machines and Drives Conference, Paper MD2-4,

May 18–21, 1997, Milwaukee, Wisconsin, U.S.A. � 1997 IEEE

(b) Portions reprinted by permission of K.L. Shi, T.F. Chan and Y.K. Wong, “Hybrid fuzzy two-stage controller for an

induction motor,” 1998 IEEE International Conference on Systems, Man, and Cybernetics, pp. 1898–1903, October

11–14, 1998, San Diego, U.S.A. � 1998 IEEE.

(c) Portions reprinted by permission of K.L. Shi, T.F. Chan, Y.K. Wong and S.L. Ho, “An improved two-stage control

scheme for an induction motor,” Proceedings of the IEEE 1999 International Conference on Power Electronics and

Drive Systems, pp. 405–410, July 27–29, 1999, Hong Kong. � 1999 IEEE.

(d) Portions reprinted bypermission ofK.L. Shi, T.F. Chan,Y.K.Wong andS.L.Ho, “Anovel hybrid fuzzy/PI two-stage

controller for an inductionmotor drive,” IEEE International ElectricMachines andDrives Conference (IEMDC2001),

pp. 415–421, June 17–20, 2001, Cambridge, MA, U.S.A. � 2001 IEEE.

(e) Portions reprinted fromK.L. Shi, T.F. Chan,Y.K.Wong and S.L.Ho, “Modeling and simulation of a novel two-stage

controller for an induction motor,” International Association of Science and Technology for Development (IASTED)

Journal on Power and Energy Systems, 19(3), 257–264, � 1999, with permission from ACTA Press.
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The slip frequency or is given by Equation (2.18):

or ¼ 3RrT
*

Pledr*
2

ð6:2Þ

where Rr is the rotor resistance, P is the number of poles, T� denotes the torque command, and

ledr
* denotes rotor flux command.

If T� is maintained constant during acceleration, or is also constant. As oo changes during

acceleration and deceleration, o has to be varied so that Equation (6.1) is satisfied.

The second feature may be proved using the following field orientation conditions

(Trzynadlowski, 1994):

leqr ¼ 0

ledr ¼ const:
ð6:3Þ

Substituting Equation (6.3) into Equation (2.15),

ieds ¼
ledr
LM

¼ const: ð6:4Þ

Equation (2.17) may be rewritten as:

ieqs ¼
T*

kql
e
dr

ð6:5Þ

where kq ¼ PLM

3Lr
.

Stator phase current magnitude ĵIsj can be expressed by:

ĵIsj ¼ 2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðiedsÞ2 þðieqsÞ2

q
ð6:6Þ

Substituting Equations (6.4) and (6.5) into Equation (6.6),

ĵIsj ¼ 2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ledr
LM

� �2

þ T*

kql
e
dr

� �2
s

: ð6:7Þ

When the torque command T� is constant, Equation (6.7) becomes:

ĵIsj ¼ 2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ie2ds þ ie2qs

q
¼ const:

In this chapter, the above two features of field-oriented control are employed in the design of

a novel two-stage control scheme for an induction motor. A simulation study on the proposed

hybrid fuzzy/PI two-stage controller is carried out using the software MATLAB�/Simulink

and the results are compared with that obtained from an indirect field-oriented controller.
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6.2 Two-Stage Control Strategy for an Induction Motor

The current-input induction motor model shown in Figure 6.1 has three inputs, namely the

stator currentmagnitude Is, supply frequencyo, and load torqueTL. It has an output, namely the

rotor speed oo. The relationship between the output and inputs may be expressed as:

oo ¼ IMðIs;o; TLÞ: ð6:8Þ

The speed response of the motor may be divided into two stages, an initial acceleration/

deceleration stage, and a final steady-state stage, as shown in Figure 6.2.

The basic principle of the two-stage controller may be described as follows (Shi, Chan and

Wong, 1997; Shi, Chan and Wong, 1999).

1. During the acceleration/deceleration stage, the stator current magnitude |Is| is maintained

constant and the rotor accelerates or decelerates depending on the input frequency o.

1

Current
frequency 1

Rotor
speed3

Load

2

Current
amplitude

Induction
motor

Figure 6.1 An induction motor model with current input. (Reproduced by permission of K.L. Shi, T.F.

Chan and Y.K. Wong, “Hybrid fuzzy two-stage controller for an induction motor,” 1998 IEEE

International Conference on Systems, Man, and Cybernetics, pp. 1898–1903, October 11–14, 1998,

San Diego, U.S.A. � 1998 IEEE.)
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Figure 6.2 Typical speed response of an induction motor. (Reproduced by permission of K.L. Shi, T.F.

Chan and Y.K. Wong, “Hybrid fuzzy two-stage controller for an induction motor,” 1998 IEEE

International Conference on Systems, Man, and Cybernetics, pp. 1898–1903, October 11–14, 1998,

San Diego, U.S.A. � 1998 IEEE.)
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2. During the final steady-state stage, the input frequency o is held constant and the speed of

rotor oo is maintained constant by controlling the stator current magnitude |Is|.

In the two-stage speed control scheme, the relationship between inputs and outputs is described

by Table 6.1.

A problem arises as how to vary the supply frequency from zero to the final frequency of the

command speed. If the supply frequency rises too fast, the torque will produce oscillations so

that the acceleration/deceleration period is longer, but if the supply frequency rises too slowly,

the torque will be so small that the acceleration/deceleration period is again prolonged. To

tackle this problem, a fuzzy controller is designed using the equations of field-oriented control.

6.3 Fuzzy Frequency Control

Fuzzy-logic control is an important intelligent control method which uses fuzzy rule sets and

linguistic representation of a human’s knowledge to control a plant. In the proposed two-stage

control scheme, fuzzy logic frequency control based on the frequency feature of the field

orientation principle is developed. During the acceleration stage, the torque command has a

larger value, whereas during the steady-state stage, the torque command has a smaller value.

These commands can be determined from the difference between rotor speed oo and speed

command oo
�:

T* ¼
Tacceleration when Doo 6¼ 0

Tsteady when Doo ¼ 0

(
ð6:9Þ

where speed error Doo¼oo
� �oo.

Substituting Equations (6.2)–(6.9), the slip frequency of field-oriented control is

or ¼

3RrTacceleration

Pledr*
2

when Doo 6¼ 0

3RrTsteady

Pledr*
2

when Doo ¼ 0

8>>>><
>>>>:

ð6:10Þ

Table 6.1 Two-stage speed control scheme.

Stages Inputs Output Control

o |Is| oo objective

Acceleration or deceleration change constant change change

speed

Steady-state constant change constant eliminate

oscillations

(Reproduced by permission of K.L. Shi, T.F. Chan andY.K.Wong, “Hybrid fuzzy two-stage controller for an induction

motor,” 1998 IEEE InternationalConference onSystems,Man, andCybernetics, pp. 1898–1903,October 11–14, 1998,

San Diego, U.S.A. � 1998 IEEE.)
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At steady state, the torque commandTsteady is equal to the load torqueTL. IfTL is a function of

the motor speed, that is, TL¼ TL(oo), then

Tsteady ¼ TLðooÞ: ð6:11Þ

For the present investigation, the following load characteristic is assumed (Wade, Dunnigan

and Williams, 1997):

TL ¼ moo ð6:12Þ

where coefficient m¼ 0.18Nm/(rad/s).

WhenDo¼ 0, replacingoowithoo
�, and substituting Equation (6.12) into Equation (6.10),

the steady-state slip frequency may be written as:

or ¼

3Rr

Pledr*
2
� Tacceleration when Doo 6¼ 0

3Rr

Pledr*
2
� moo

* when Doo ¼ 0

8>>><
>>>:

: ð6:13Þ

Because the slip frequency or is a function of variables Do and oo
�, it can be written as:

or ¼ f ðo*

o;DooÞ ð6:14Þ

According to (6.14), the speed errorDo and speed commandoo
� can be used as the inputs of

the fuzzy frequency control which consists of fuzzification, fuzzy logic inference, rulebase,

database and defuzzification. Figure 6.3 shows a fuzzy frequency control system.
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Figure 6.3 Fuzzy frequency control system. (Reproduced by permission of K.L. Shi, T.F. Chan and

Y.K. Wong, “Hybrid fuzzy two-stage controller for an induction motor,” 1998 IEEE International

Conference on Systems, Man, and Cybernetics, pp. 1898–1903, October 11–14, 1998, San Diego,

U.S.A. � 1998 IEEE.)
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The fuzzification operation is the process which converts the crisp input values (Do,oo
�) to

fuzzy sets. A fuzzy set consists of elements each having a degree ofmembership and associated

with linguistic values. The defuzzification operation is the process which determines the best

numerical valueos to represent a given fuzzy set. The database stores thememberships of fuzzy

variables, while the rulebase provides the necessary linguistic control rules for the fuzzy

inference (Sousa and Bose, 1994).

6.3.1 Fuzzy Database

The fuzzy slip frequency control uses two fuzzy state variables (speed command and speed

error) and one control variable (slip frequency). Consequently, the fuzzy database consists of

membership functions of speed command, speed error, and slip frequency.

6.3.1.1 Membership Functions of Speed Command

Let the normal range of speed (oo) be from�120 rad/s to 120 rad/s. The universe of discourse

of the speed command fuzzy variable is divided into seven overlapping fuzzy sets: Fwo¼
{NBwo,NMwo,NSwo, Zwo, PSwo, PMwo, PBwo}, as shown in Figure 6.4, wherem(wo) denotes the
degree of membership of speed command.

6.3.1.2 Membership Functions of Speed Error

When the range of speed command (oo
�) is from�120 rad/s to 120 rad/s, the range of the speed

error (Doo) is from�240 rad/s to 240 rad/s. The universe of discourse of the speed error fuzzy

variable is divided into three overlapping fuzzy sets: FDwo¼ {NDwo, ZDwo, PDwo} as shown in

Figure 6.5, where m(Dwo) denotes the degree of membership of speed error.

6.3.1.3 Membership Functions of Slip Frequency

For the induction motor to be studied, Rr¼ 0.151O, P¼ 6, and T(acceleration)¼ 100 Nm. If

ledr
* ¼ 0:67Wb during the acceleration stage, thenor¼ 16.8 rad/s by Equation (6.13). For the

NB

µ

wo NMwo  NS wo Zwo PSwo PMwo PBwo

80 40 0 -40 -80 
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0.5 
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120 -120 
“wo” (rad/s) 

(wo)

160 -160 

Figure 6.4 Membership function of speed command. NB: negative big; NM: negative medium;

NS: negative small; Z: zero; PB: positive big; PM: positivemedium; PS: positive small. (Reproduced by

permission of K.L. Shi, T.F. Chan and Y.K. Wong, “Hybrid fuzzy two-stage controller for an induction

motor,” 1998 IEEE International Conference on Systems, Man, and Cybernetics, pp. 1898–1903,

October 11–14, 1998, San Diego, U.S.A. � 1998 IEEE.)
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steady-state stage, the values of steady-state slip frequency can be calculated from (6.13). The

speed command, slip frequency, and fuzzy linguistic values are shown in Table 6.2.

For the acceleration/deceleration stage, the slip frequencies are larger, so that their universe

of discourse is defined as F0
wr ¼ fPBwr;NBwrg. For the steady-state stage, the slip frequencies

are smaller so that their universe of discourse is defined as F
00
wr ¼ fPMwr; PSwr; Pwr; Zwr;

Nwr; NSwr; NMwrg. The universe of discourse of the slip frequency is Fwr ¼ fF0
wr; F

00
wrg, and

m(wr) denotes the degree ofmembership of slip frequency.Using the slip frequency values given

inTable 6.2, the slip fuzzymembership functions are defined using the triangular distribution as

shown in Figure 6.6.

6.3.2 Fuzzy Rulebase

For induction motors from 3 to 50 hp, the torque computed using the steady-state

equivalent circuit is approximately equal to the average of the transient torque given by

N

µ

Dwo ZDwo PDwo

240 -240 

1

0.5 

0

-5 5 “Dwo” (rad/s)

(Dwo)

Figure 6.5 Membership function of speed error. N: negative; Z: zero; P: positive. (Reproduced by

permission of K.L. Shi, T.F. Chan and Y.K. Wong, “Hybrid fuzzy two-stage controller for an induction

motor,” 1998 IEEE International Conference on Systems,Man, andCybernetics, pp. 1898–1903,October

11–14, 1998, San Diego, U.S.A. � 1998 IEEE.)

Table 6.2 Speed, slip frequency, and fuzzy linguistic values.

Stages oo
� or Fwr

Deceleration — �16.8 NBwr

Steady state �120 �3.64 NMwr

�80 �2.42 Nwr

�40 �1.21 NSwr
0 0 Zwr

40 1.21 PSwr
80 2.42 Pwr
120 3.64 PMwr

Acceleration — 16.8 PBwr

(Reproduced by permission of K.L. Shi, T.F. Chan andY.K.Wong, “Hybrid fuzzy two-stage

controller for an induction motor,” 1998 IEEE International Conference on Systems, Man,

and Cybernetics, pp. 1898–1903, October 11–14, 1998, San Diego, U.S.A.� 1998 IEEE.)

Hybrid Fuzzy/PI Two-Stage Control 139



www.manaraa.com

the free-acceleration torque-speed characteristic (Krause, Wasynczuk and Sudhoff, 1995).

Accordingly the steady-state characteristics are used in the control formulations.

The torque-speed curves in Figure 6.7 illustrate the four operating states of an induction

motor.When the inductionmotor is operated in regions I or IV, it works in the normal motoring

mode. When the induction motor is operated in regions II or III, it works in the generating

mode. The slip speed or of the induction motor may be expressed as:

or ¼ o�P

2
oo: ð6:15Þ

FromFigure 6.7, it is seen that T(oo(I))> 0,T(oo(II))� 0,T(oo(IV))� 0, andT(oo(III))> 0.

In order to obtain larger acceleration/deceleration torque, when oo
� > 0 and oo

� �oo> 0

(operating state I), orwhenoo
� � 0 andoo

� �oo> 0 (operating state III), the instantaneous slip

frequency commandor should have a positive value and its fuzzy linguistic value is PBwr.When

oo
� > 0 and oo

� �oo< 0 (operating state II), or when oo
� � 0 and oo

� �oo< 0 (operating

state IV), the instantaneous slip frequency command or should have a negative value and its

fuzzy linguistic value is NBwr. The slip frequency control rules for the acceleration/deceleration

stage may be summarized in Table 6.3.
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Let ‘wo’ denote the speed commandoo
�, ‘Dwo’ denote the speed error (oo

� �oo), and ‘wr’

denote the slip frequency or. With reference to the control rules of the acceleration/

deceleration stage in Table 6.3 and the steady-state control rules in Table 6.2, 21 slip frequency

control rules are formulated and input to the fuzzy rulebase as shown in Table 6.4.

6.3.3 Fuzzy Inference

The fuzzy inference includes a linguistic inference and a degree of membership calculation

which gives the degree of membership of the output variable according to the rules. The inputs

of the linguistic inference consist of two fuzzy linguistic values F(wo)i and F(Dwo)j, and the

output is u(k) (crisp fuzzy linguistic value of slip frequency). The inputs of the degree of

membership calculation consists of two degrees of membership m(wo)s and m(Dwo)t, and the

output is m(wr)(yk) (degree of slip frequency membership).

6.3.3.1 Linguistic Inference

Using the 21 rules of fuzzy rulebase in Table 6.4, the linguistic inference of the fuzzy linguistic

values can be expressed as:

IFFðwoÞi AND FðDwoÞj;THEN FðwrÞk ð6:16Þ

where FðwoÞi 2 fNBwo;NMwo;NSwo;Zwo; PSwo; PMwo; PBwog;FðDwoÞj 2 fNDwoZDwoPDwog;

and FðwrÞk 2 fNBwr;NMwr;Nwr;NSwr;Zwr; PSwr; Pwr; PMwr; PBwrg: ð6:17Þ

Table 6.3 Slip speed control rules for the acceleration/deceleration stage.

Control Conditions oo
� > 0

(oo
� �oo)> 0

oo
� > 0

(oo
� �oo)< 0

oo
� � 0

(oo
� �oo)> 0

oo
� � 0

(oo
� �oo)< 0

Operation States I II III IV

Action Rules or is PBwr or is NBwr or is PBwr or is NBwr

(Reproduced by permission of K.L. Shi, T.F. Chan andY.K.Wong, “Hybrid fuzzy two-stage controller for an induction

motor,” 1998 IEEE InternationalConference onSystems,Man, andCybernetics, pp. 1898–1903,October 11–14, 1998,

San Diego, U.S.A. � 1998 IEEE.)

Table 6.4 Fuzzy rulebase of slip frequency control.

Dwo
wo NBwo NMwo NSwo Zwo PSwo PMwo PBwo

NDwo NBwr NBwr NBwr NBwr NBwr NBwr NBwr

ZDwo NMwr Nwr NSwr Zwr PSwr Pwr PMwr

PDwo PBwr PBwr PBwr PBwr PBwr PBwr PBwr

(Reproduced by permission of K.L. Shi, T.F. Chan and Y.K. Wong, “Hybrid fuzzy two-stage controller for an

induction motor,” 1998 IEEE International Conference on Systems, Man, and Cybernetics, pp. 1898–1903,

October 11–14, 1998, San Diego, U.S.A. � 1998 IEEE.)
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The crisp value of fuzzy linguistic F(wr)k is:

uðkÞ ¼ uðFðwrÞkÞ ð6:18Þ

where u(k) 2{�16.8 �3.64, �2.42, �1.21, 0, 1.21, 2.42, 3.64, 16.8}.

6.3.3.2 Degree of Membership Calculation

The MAX-MIN principle (Bose, 1997) is adopted in the degree of membership calculation. If

the input signals are x1 (speed command) and x2 (speed error), then the degree of membership

of speed command is m(wo)(x1), and the degree of speed error is the m(Dwo)(x2). If the output
signal is y, then the degree of membership of slip frequency is m(wr)(y).

Because the operation between ‘wo¼ ’ and ‘Dwo’ is ‘AND’ according to (6.16), the ‘MIN’

(Intersection) operation is used. For any inference rule, the degree of membership of output

‘wr’ ism(wr) and the degree ofmembership calculation of the slip frequency can be expressed as:

mðwrÞq ¼ MIN½mðwoÞsðx1Þ; mðDwoÞtðx2Þ� ð6:19Þ

where s2 {NBwo, NMwo, NSwo, Zwo, PSwo, PMwo, PBwo}, t2 {NDwo ZDwo PDwo}, and

q2 {NBwr, NMwr, Nwr, NSwr, Zwr, PSwr, Pwr, PMwr, PBwr}.

Because the logic relationships between the 21 fuzzy rules are ‘OR’ in Table 6.4, the degree

of membership of output y is calculated by ‘MAX’ (Union) operation.

mðwrÞðykÞ ¼ MAXðmðwrÞpjp¼1;2;...21Þ ð6:20Þ

6.3.4 Defuzzification

After the fuzzy inference, the fuzzy output needs to be converted into a crisp value required by

the inverter control. The inputs of defuzzification are u(k) andm(wr)(yk), which are the outputs of
fuzzy inference. The output is the numerical value of slip frequency, y. In this design, the

centroid method is used to implement the defuzzification operation (Kosko, 1997).

y ¼

Xn
k¼1

uðkÞmðwsÞðykÞ
Xn
k¼1

mðwsÞðykÞ
ð6:21Þ

6.3.5 Fuzzy Frequency Controller

Simulation of the frequency controller may be implemented using the software MATLAB�/

Simulink with Fuzzy Logic Toolbox as shown in Figure 6.8. The inputs of the controller are the

speed command and the rotor speed. The output is the frequency command to the inverter.

The controller has three characteristics: (1) its supply frequency is almost the same as field-

oriented control, hence it can maintain a large acceleration/deceleration torque in the four
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operating states; (2) it is insensitive tomotor parameter changes; (3) the speed response over the

whole speed range, even subjected to large noise and load disturbances, is very satisfactory.

6.4 Current Magnitude PI Control

During the acceleration/deceleration stage, the stator current magnitude is regulated as the

maximum permissible value of the inverter drive system. During the final steady-state period,

the supply frequency is maintained constant, while the stator current magnitude is adjusted to

control the rotor speed.When the supply frequency is fixed, the torque-current relationshipmay

be expressed as Equation (6.22) (Krause, Wasynczuk and Sudhoff, 1995) and is illustrated in

Figure 6.9.

T ¼ 3P

2
�

Rr o�P

2
oo

� �
L2mI

2
s

Rr
2 þ o�P

2
oo

� �2

ðLm þ LlrÞ2
ðN �mÞ ð6:22Þ

Figure 6.9 shows the process of controlling the speed oo by stator current magnitude

according to the speed error. The decaying oscillations of speed about the final operating point

have been eliminated.

The following proportional-and-integral control with output saturation is used in the

nonlinear control.

Is ¼ Kpðoo
*�ooÞþKI

ð
ðoo

*�ooÞ dt ð6:23Þ

jIsj ¼
jIsj jIsj < 50 A steady--state stage

50 jIsj � 50 A acceleration stage

(
ð6:24Þ
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Figure 6.8 Simulink blocks of frequency controller. (Reproduced by permission of K.L. Shi, T.F. Chan

and Y.K. Wong, “Hybrid fuzzy two-stage controller for an induction motor,” 1998 IEEE International

Conference on Systems,Man, and Cybernetics, pp. 1898–1903, October 11–14, 1998, San Diego, U.S.A.

� 1998 IEEE.)
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When a PI controller is used to control the nonlinear system, it must be tuned very

conservatively in order to provide stable behavior over the entire range of operating conditions

(Henson and Seborg, 1997). In this study, coordination of the current magnitude control for the

two stages is achieved using the following strategy:

1. When |oo
� �oo|� 3, the current magnitude control changes from a steady-state stage to an

acceleration stage.

2. When 2.5 < |oo
� �oo|< 3, the control pattern is unchanged.

3. When |oo
� �oo|� 2.5, the currentmagnitude control changes from an acceleration stage to

a steady-state stage.

During the steady-state stage, stator current Is has a small value. When |oo
� �oo|� 3, the

currentmagnitude control changes from the steady-state stage to an acceleration stage. If we let

Kp(oo
� �oo)> 50, that is, Kp> 16.6, then Is of Equation (6.23) is larger than 50 A, and hence

the proportional coefficient Kp may be chosen as 17.

The maximum value of the integral part of Equation (5.63) can be estimated from an

acceleration process with oo
� ¼ 120, oo(t¼ 0 s)¼ 0, assuming that the rotor speed rises at

uniform acceleration and oo(t¼ 0.2 s)� 120, that is,

ð0:2
t¼0

ðoo
*�ooÞdt � 12 ð6:25Þ
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When the current magnitude control changes from an acceleration stage to a steady-state

stage, substituting (oo
� �oo)¼ 2.5,Kp¼ 17, and Equation (6.25) into Equation (6.23), and let

Is< 50, then KI< 0.625. Therefore the integral coefficient KI is chosen as 0.6.

A current magnitude controller can be designed as shown in Figure 6.10.

The current magnitude controller consists of a sum block to calculate speed error, a PI block

to implement Equation (6.23), and a saturation block to implement Equation (6.24). During

acceleration or deceleration stage, there is a larger difference between the speed command and

the rotor speed. Consequently, the PI controller has a larger output. Due to the function of the

saturation block, the supply current amplitude is maintained constant during acceleration or

deceleration stage. During the steady-state stage, there is a smaller difference between speed

command and rotor speed. Consequently, the output of the PI controller is smaller than the limit

of the saturation block and the rotor speed is controlled by the current amplitude.

6.5 Hybrid Fuzzy/PI Two-Stage Controller for an Induction Motor

By combining the fuzzy frequency controller and the current magnitude PI controller, a hybrid

fuzzy/PI two-stage controller can be formed. During the acceleration/deceleration period, the

current magnitude controller outputs the maximum permissible current. During the final

steady-state period, the fuzzy frequency controller outputs the frequency that corresponds to

the speed command. The model of two-stage speed controller for the induction motor is

constructed using MATLAB�/Simulink as shown in Figure 6.11. The current-input model of

induction motor in Chapter 3 is employed.

The simulation model of the two-stage controller consists of the induction motor model,

the frequency control sub-model (Figure 6.8), the current magnitude control sub-model

(Figure 6.10), a load block, a command block, and a scope sink for display of rotor speed.

In addition, three scope sinks are configured inside the sub-models for observing the current,

slip frequency, and torque. The load block implements the load function of Equation (6.12).

6.6 Simulation Study on a 7.5 kW Induction Motor

Computer simulations were performed on the fuzzy/PI two-stage controller shown in

Figure 6.11 for a 7.5 kWinductionmotor. Five investigations were undertaken: (1) comparison
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Figure 6.10 Simulink blocks of current magnitude controller. (Reproduced by permission of K.L. Shi,

T.F. Chan and Y.K. Wong, “Hybrid fuzzy two-stage controller for an induction motor,” 1998 IEEE

International Conference on Systems, Man, and Cybernetics, pp. 1898–1903, October 11–14, 1998, San

Diego, U.S.A. � 1998 IEEE.)
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with field-oriented control, (2) effects of parameter variation, (3) effects of noise in the

measured speed and input current, (4) effects of magnetic saturation, and (5) effects of load

torque variation.

The parameters of the 7.5 kW induction motor chosen for the simulation studies are listed in

‘Motor 1’ of Appendix B. It is assumed that the induction motor is taken through the following

control cycle:

Speed Command Period

oo
� ¼ 120 rad/s 0 s� t< 4s

oo
� ¼�120 rad/s 4 s� t< 8s

oo
� ¼ 120 rad/s 8 s� t< 12s

oo
� ¼ 0 rad/s 12 s� t< 15s

Permissible magnitude of stator current of the induction motor is 50 A. The moment of

inertia, JL, of the load equals that of the motor.

6.6.1 Comparison with Field-Oriented Control

Figures 6.12, 6.14, 6.16 and 6.18 show the simulation results of the hybrid fuzzy/PI controller.

Very fast speed response is obtained with the two-stage control method. Due to the current

control in the final steady-state stage, the oscillations of speed about the final operating point

are completely eliminated.

In order to compare the new controller with a field-oriented controller, an indirect rotor flux

field-oriented controller was investigated. In the computer simulation, the acceleration torque

T� ¼ 100 Nm, the rotor flux command ledr
* ¼ 0:67Wb, Rr¼ 0.151O, LM¼ 0.042 H/ph and

Current control
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motor
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Fcn

Speed
command

Rotor
speed
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amplitude

Figure 6.11 Simulink blocks of the hybrid fuzzy/PI control system. (Reproduced by permission of K.L.

Shi, T.F. Chan and Y.K. Wong, “Hybrid fuzzy two-stage controller for an induction motor,” 1998 IEEE

International Conference on Systems, Man, and Cybernetics, pp. 1898–1903, October 11–14, 1998, San

Diego, U.S.A. � 1998 IEEE.)
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Figure 6.17 Torque response of FOC controller.
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kq¼ 2, hence the magnitude of phase current is about 50 A from Equation (6.7) (same as that

for the hybrid fuzzy/PI controller), while the slip frequency is 16.8 rad/s from (6.13).

Figures 6.13, 6.15, 6.17, and 6.19 show the simulation results of the indirect FOC controller.

Since the hybrid fuzzy/PI two-stage controller has almost the same current and slip

frequency responses as FOC, it has approximately the same torque response, although in the

former case, the torque has not been directly controlled. Consequently, the speed response of

the new controller is almost the same as the field-oriented controller (Figures 6.18 and 6.19).

But the torque oscillations and the transient torque peaks (Figure 6.16) may increase the

mechanical stress of the motor shaft.

6.6.2 Effects of Parameter Variation

In order to illustrate the insensitivity of the hybrid fuzzy/PI two-stage controller to the variation

of motor parameters, the rotor resistance and themutual inductance are assumed to be changed

to 2Rr and 0.7LM respectively. Figure 6.20 shows the stator current of the inductionmotor drive,

while Figures 6.21 and 6.22 show that the torque and speed responses of the fuzzy controller are

insensitive to parameter variations.
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drive with parameter variations.
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6.6.3 Effects of Noise in the Measured Speed and Input Current

In order to evaluate the effects of the noise of speed sensor and the noise of the input current,

distributed random noises are added into the feedback speed and input current. The simulation

is achieved using the random number blocks of Simulink, which generate a pseudo-random,

normally distributed (Gaussian) number (Simulink, 1994). The speed response with the

measured speed noise (mean of zero and variance of 3) and in the current noise (mean of

zero and variance of 10) shows that the hybrid fuzzy/PI two-stage controller has good

disturbance rejection (Figure 6.23).

6.6.4 Effects of Magnetic Saturation

In order to study the effect of magnetic saturation of the induction motor on the controller

performance, two saturation blocks are included in the induction motor model to simulate the
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Figure 6.23 Rotor speed response with current noise and measured speed noise.
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nonlinear relationship between the current and flux, where ledr and leqr are assumed to be less

than 0.8Wb due to saturation. Figures 6.24–6.26 show the simulation results of the rotor speed,

stator phase current and torque responses. As a result of magnetic saturation, flux increase is

limited so that the torque oscillations are reduced significantly, but excessive magnetic

saturation during the acceleration/deceleration stage will produce larger losses and a higher

temperature rise.

6.6.5 Effects of Load Torque Variation

The simulation will investigate effects of load torque variation on the hybrid fuzzy/PI control

system. The load torque variation may be implemented by changing parameters of the load

function block in the simulation program (see Figure 6.11). In the simulation, the control

system experiences sudden changes in the load torque: at t¼ 2.5 s, the load increases from

100% to 200% of the rated torque, TL, at t¼ 7 s, the load decreases to 100% of TL, and at

t¼ 10 s, the load increases to 200% of TL again. Figure 6.27 shows the rotor speed of the fuzzy
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Figure 6.24 Magnetic saturation effect on speed response of fuzzy controller.
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Figure 6.25 Magnetic saturation effect on stator current of fuzzy controller.
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control systemwith load torque variation. At about 2.5 s, following the load changes, the speed,

initially at 120.08 rad/s, drops to 119.94 rad/s, but is restored to 120.08 rad/s in 0.2 s.

Figures 6.28–6.30 show the stator current, slip frequency, and torque response with load

torque variation.
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Figure 6.26 Magnetic saturation effect on torque response of fuzzy controller.
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Figure 6.27 Rotor speed of the fuzzy control system with the load torque variation.

0 5 10 15
-100
-80
-60
-40
-20

0
20
40
60
80

100

Time (s)

St
at

or
 c

ur
re

nt
 (

A
) 

Figure 6.28 Stator current with load torque

variation.
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Figure 6.29 Slip with load torque variation.
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The above simulation results show that the fuzzy/PI controller can accommodate larger

changes in load torque.

6.7 Simulation Study on a 0.147 kW Induction Motor

The fuzzy/PI controller has been simulated using the current-input model of the

induction motor. In this section, the voltage-input model of an induction motor built

in Chapter 3 is used in simulation studies on a 0.147 kW induction motor (Bodine

Electric Company model 295) for the fuzzy/PI two-stage controller. Parameters of the

0.147 kW induction motor for the simulation studies are listed in ‘Motor 3’ of Appendix

B. The simulation program of fuzzy/PI two-stage control system is shown in Figure 6.31.

The current frequency and magnitude are transformed to stator current commands (ia
�,

ib
�, ic�) by the ‘3-phase current’ block which is described in Figure 3.2 in Chapter 3. The

stator voltages (Va, Vb, Vc) are produced by three ‘PI’ blocks of stator-current control

with difference of the stator current commands (ia
�, ib�, ic�) and the actual stator currents

(ia, ib, ic) as input.

The load characteristic of Equation (6.12) is assumed with the coefficient m¼ 0.00 532Nm/

(rad/s). When the rotor speed is 188 rad/s, the load torque equals 1 Nm.

Because the pole number of the induction motor is 4, the normal range of speed (oo) is

from �188 rad/s to 188 rad/s. The membership function of speed command has to be

designed again and is shown in Figure 6.32.

When the range of speed command (oo
�) is from �188 rad/s to 188 rad/s, the range of the

speed error (Doo) is from �376 rad/s to 376 rad/s. The membership function of speed error is

designed as shown in Figure 6.33.

For the 0.147 kW induction motor, Rr¼ 12.76O, P¼ 4, and T(acceleration)¼ 1.3Nm. If

ledr
* ¼ 0:8Wb during the acceleration stage, then or¼ 19.53 rad/s from Equation (6.3). For

the steady-state stage, the value of steady-state slip frequency can be calculated from s¼ 0.03.
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Figure 6.30 Torque response with load torque variation.
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The speed command, slip frequency, and fuzzy linguistic values of the membership functions

of slip frequency are shown in Table 6.5.

When permissible magnitude of stator current of the induction motor is assumed as 3 A, the

proportional and integral parameters in the ‘fuzzy-PI controller’ block in Figure 6.31 may be

NB

μ

wo NMwo  NS wo Zwo PSwo PMwo PBwo

126 63 0 -63 -126 

1

0.5 

0

188 -188 
“wo” (rad/s) 

(wo)

250 -250 

Figure 6.32 Membership function of speed command. NB: negative big; NM: negative medium;

NS: negative small; Z: zero; PB: positive big; PM: positive medium; PS: positive small.

NDwo ZDwo PDwo

376 -376 

1

0.5 

0

-3 3 “Dwo” (rad/s)

µ(Dwo)

Figure 6.33 Membership function of speed error. N: negative; Z: zero; P: positive.

Table 6.5 Speed, slip frequency, and fuzzy linguistic values.

Stages oo
� or Fwr

Deceleration — �19.53 NBwr

Steady state �188 �5.64 NMwr

�80 �2.4 Nwr

�40 �1.2 NSwr
0 0 Zwr

40 1.2 PSwr
80 2.4 Pwr
188 5.64 PMwr

Acceleration — 19.53 PBwr
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designed according to Equations (6.23), (6.24), and (6.25) as:

Kp ¼ 1

KI ¼ 0:03

The three PI controllers of stator currents in the ‘PI’ blocks in Figure 6.31 would force the

error between the stator current commands and actual stator currents to zero. The inner current

loops were tuned with constant stator current command. (i.e. with the fuzzy-PI controller

disabled). Once satisfactory results were obtained, the fuzzy-PI controller was tuned.

The transfer function of the PI controller of stator currents is represented by

GPIðsÞ ¼ Kp þ KI

s
: ð6:26Þ

The controller has a zero at:

s ¼ � KI

Kp

ð6:27Þ

and a pole at the origin.

Let s ¼ 1� L2m
LsLr

ð6:28Þ

Substituting Equations (6.28) and (3.10) into Equation (3.11) gives:

Vs
e ¼ Rsi

e
s þ sLs

d

dt
ies þ

Lm

Lr

d

dt
ler�joles : ð6:29Þ

In this equation, the stator voltage is represented by four terms. The last two can be

considered as disturbance terms and can be neglected in the PI controller design. The first two

terms represent the plant to be controlled.

The transfer function of the plant is represented by:

Gmotor ¼ 1

sLssþRs

ð6:30Þ

which has a pole at:

s ¼ � Rs

sLs
: ð6:31Þ

To give a critically damped response, the ratio of Kp and KI can be chosen to place the

controller zero at the plant pole:

KI

Kp

¼ Rs

sLs
: ð6:32Þ
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The open-loop transfer function of the PI controller of stator currents and the motor can be

expressed as:

Gopenloop ¼ GPI 	 Gmotor ¼ Kp

1

sLss
: ð6:33Þ

Making the following substitution:

K ¼ Kp

1

sLs
ð6:34Þ

gives the following equation:

Gopenloop ¼ K

s
:

Closing the feedback loop with unity gain results in the following closed-loop transfer

function:

Gclosedloop ¼ K

sþK
: ð6:35Þ

This is recognized to be a single-pole low pass filter with 3-dB corner frequency at:

F3dB ¼ K

2p
: ð6:36Þ

Choosing the simulation controller bandwidth of 100Hz results in:

K ¼ 2p	 100: ð6:37Þ

Kp can be obtained by substituting K into Equation (6.34):

Kp ¼ 200p	 sLs: ð6:38Þ

From Appendix H and Equation (6.28), s¼ 0.208 and Ls¼ 0.3185 H. Substituting these

values into Equation (6.38),

Kp ¼ 200p	 0:208	 0:3185

Kp ¼ 42
: ð6:39Þ

KI can be obtained from Equation (6.32) with s¼ 0.208, Ls¼ 0.3185 H, and Rs¼ 14.6O:

KI ¼ 42	 14:6

0:208	 0:3185

KI ¼ 9256

: ð6:40Þ
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It is assumed that the induction motor is taken through the following control cycle:

Speed Command Period

oo
� ¼ 180 rad/s 0 s� t< 0.5 s

oo
� ¼ 20 rad/s 0.5 s� t� 1.5 s

Figure 6.34 shows that, when permissible magnitude of stator current of the induction motor

is 3A, the actual stator current ic (dotted line) of the voltage-inputmodel of the inductionmotor

is able to track the stator current command ic
� (solid line).

Figure 6.35 shows controlled slip frequency and controlled stator current of the fuzzy/PI

control system.

Figure 6.36 shows the phase voltage and rotor speed response of the voltage-input model of

the 0.147 kW induction motor.
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Figure 6.34 Actual stator current ic (dotted line) and stator current command ic
� (solid line).
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Figure 6.35 Controlled slip frequency and controlled stator current.
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6.8 MATLAB�/Simulink Programming Examples

Two examples are given to illustrate programming of a fuzzy/PI two-stage controller using

MATLAB�/Simulink. The voltage-input model of an induction motor is first developed, and it

is then used in a fuzzy/PI two-stage controller for an induction motor.

6.8.1 Programming Example 1: Voltage-Input Model of an
Induction Motor

This example demonstrates programming of the voltage-input model of a 0.147 kW

induction motor, which is the ‘IM’ block in Figure 6.31. The electrical model of the

induction motor is described by Equation (3.16) and the mechanical model is described by

Equation (3.17).

Step 1 Implementing the Induction Motor Model

The induction motor model is implemented by using Simulink blocks as shown in Figure 6.37.

The inputs of the induction motor model are dq-axis stator voltages (Vds, Vqs) and the load.

The outputs of themodel are the three-phase stator currents (iasibsics), rotor speed, and torque. In

the induction motor model, the ‘Matrix A’ block is implemented by a ‘MATLAB Function’

block and the ‘MatrixB’ block is implemented by a ‘MatrixGain’ block. The twomatrix blocks

in Equation (3.16) are used to simulate the electrical model of induction motor. The ‘2/3’ block

is implemented by a ‘Matrix Gain’ block, which simulates dq-axis to three-phase transforma-

tion described in Equation (3.5).

Themechanical model of the induction motor is simulated by the ‘Mechanical model’ block

in Figure 6.37 and its details are shown in Figure 6.38.

The inputs of the mechanical model are stator currents, rotor currents, and torque. The

outputs of the mechanical model are torque and rotor speed. The stator currents and rotor

currents come from the electrical model in Figure 6.37. Calculation of the torque in the
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Figure 6.36 Phase voltage and rotor speed response of the voltage-input model of the 0.147 kW

induction motor.
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mechanical model is based on Equation (3.17) and calculation of the rotor speed is based on

Equation (3.12). The motor parameters (‘Motor 3’ in Appendix B) are given as follows.

0.147 kW induction motor (Bodine Electric Company model 295)

Stator resistance: Rs¼ 14.6O/ph
Rotor resistance Rr¼ 12.77O/ph
Stator inductance, Ls¼ 0.3185H/ph

Mutual inductance, LM¼ 0.2963H/ph

Rotor inductance Lr¼ 0.3482H/ph

Moment of inertia of the rotor JM¼ 0.001 kgm2

Coefficient of friction Cf¼ 0.000 124

Number of poles P¼ 4

Step 2 Configuring the Parameters of the Simulink Blocks
With the above electrical parameters of the induction motor, matrix A is as shown in Table 6.6,

while matrix B is obtained by a matrix inverse according to Equation (3.16), as follows:

B ¼ invð½0:3185; 0; 0:2963; 0; 0; 0:3185; 0; 0:2963; 0:2963; 0; 0:3482; 0; 0; 0:2963; 0; 0:3482�Þ

Upon entering the above MATLAB� command, the matrix B is obtained:

B ¼

15:0684 0 �12:8224 0

0 15:0684 0 �12:8224

�12:8224 0 13:7831 0

0 �12:8224 0 13:7831

2
666664

3
777775

The functions and parameters of the main blocks of the induction motor are listed in

Table 6.6.

2

Torque

1

Rotor 
speed

1/0.001

s+0.000124

Transfer Fcn1

-K-

2

Load

1

Is, Ir 

Figure 6.38 Mechanical model of induction motor.
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Step 3 Adding a Voltage Source and the Load to the Induction Motor Model

For testing of themotormodel, a ‘dq-axisVoltage source’ block and a ‘Load’ block are added to

the motor model, as shown in Figure 6.39.

The ‘Load’ block with a constant value 0.8 simulates a load torque of 0.8 Nm. The ‘dq-axis

Voltage source’ block yields the dq-axis voltages Vds and Vqs, and its details are shown in

Figure 6.40.

Table 6.6 Function and parameters of the blocks of the 0.147 kW induction motor.

Block Name Function Parameters

Matrix A ‘MATLAB

Function’ block

Implement matrix A in

Equation (3.16)

[u(1)�14.6; u(2)�14.6; u(2)�u(5)�

2�0.2963 þ u(3)�12.77 þ
u(4)�u(5)�2�0.3482;

(�0.2963)�u(1)�u(5)�2
þ (�0.3482)�u(3)�u(5)�2 þ
u(4)�12.77]

Matrix B ‘Matrix Gain’

block

Implement matrix B in

Equation (3.16)

[15.0684 0 �12.8224 0;

0 15.0684 0 �12.8224;

�12.8224 0 13.7831 0;

0 �12.8224 0 13.7831]

2/3 ‘Matrix Gain’ block Implement dq-axis to 3-phase

transform in Equation (3.5)

[1 0; �1/2 sqrt(3)/2; �1/2

�sqrt(3)/2]

Transfer Fcn1 ‘Transfer

Fcn’ block

Calculate rotor speed in

Equation (3.12)

Numerator coefficient: [1/0.001]

Denominator coefficient:

[1 0.000 124]

Vdr, Vqr ‘Constant’ blocks Simulate rotor voltages Vdr¼ 0; Vqr¼ 0.

dq-axis
Voltage source

Torque

Stator
current

Speed
of rotor

0.8

Load

IM

Figure 6.39 Test model of the 0.147 kW induction motor.
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The ‘dq-axis Voltage source’ block consists of a ‘Constant’ block (which contains the

amplitude of the voltage source), a ‘Repeating Sequence’ block (which yields the phase angle

of the voltage source), and a ‘Polar to Cartesian’ block (which transforms the amplitude and

phase angle into dq-axis voltages Vds and Vqs).

To simulate a voltage sourcewith an amplitude of 269.4Vand a frequency of 60Hz, thevalue

269.4 is input into the ‘Constant’ block and the ‘Repeating Sequence’ block is filled with time

values of [0,0.001667] and an output value of [0,2�pi].

Step 4 Running the Simulink Model

The Simulink test model as shown in Figure 6.39 is run with following parameters.

Simulation type: variable-step

Max step¼ 0.0001

Min step¼ auto

Initial step¼ 0.0001

Simulation time¼ 0.5 s

The simulation results for rotor speed, torque, and three-phase stator currents are shown in

Figures 6.41–6.43, respectively.

1

Vds
Vqs

Repeating
Sequence

Polar to Cartesian

269.4

Constant

Figure 6.40 A dq-axis voltage source with output Vds, Vqs.
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Figure 6.41 Rotor speed of the 0.147 kW induction motor.
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6.8.2 Programming Example 2: Fuzzy/PI Two-Stage Controller

This example illustrates programming of the fuzzy/PI two-stage controller for the 0.147 kW

induction motor using MATLAB�/Simulink. The controller is the ‘fuzzy-PI controller’ block

in Figure 6.31.

Step 1 Implementing a Simulink Model

A model of the fuzzy/PI two-stage controller is implemented as shown in Figure 6.44.

The fuzzy/PI two-stage controller consists of a ‘Frequency Control’ block and a ‘PI

Controller’ block. Details of the two blocks are shown in Figures 6.8 and 6.10, respectively.

A ‘Saturation2’ block in Simulink library is employed to limit the amplitude of the stator

current.
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Figure 6.42 Torque of the 0.147 kW induction motor.
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Figure 6.43 Three-phase stator currents of the 0.147 kW induction motor.
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Step 2 Choosing Parameters for the Simulink Blocks

The ‘PI Controller’ employs a ‘PID Controller’ in Simulink library with a derivative parameter

of 0. Assuming the permissiblemagnitude of the stator current of the inductionmotor to be 3A,

the proportional and integral parameters in the ‘PID Controller’ block is designed as described

in Section 6.7 and the following parameters are input into the block:

Proportional¼ 1

Integral¼ 0.03

Derivative¼ 0

The Simulink block ‘Fuzzy Logic Controller’ shown in Figure 6.8 contains the parameter

‘ACCELE’ which is a file name of FIS (Fuzzy Inference System). The file ‘ACCELE’ may be

edited by the FIS editor using the command ‘Fuzzy’ in the MATLAB� window. The FIS edit

operation steps have been described in Section 4.2.2.

The ‘Fuzzy Logic Controller’ block has two inputs and one output. They are the rotor speed

command, rotor speed error, and reference slip frequency, respectively. The fuzzymembership

functions are input and edited by ‘Membership Function Editor’ on FIS editor platform. The

fuzzy membership function of the rotor speed command is shown in Figure 6.32, the fuzzy

membership function of speed error is shown in Figure 6.33, and the fuzzy linguistic values of

reference slip frequency are listed in Table 6.4. The fuzzy rules of the fuzzy controller are given

in Table 6.5 and the fuzzy rulebase is input and edited by ‘Rule editor’ on the FIS editor

platform.

Step 3 Implementing an Induction Motor Drive with Fuzzy/PI Two-Stage Controller

To study the performance of the inductionmotor drivewith the fuzzy/PI two-stage controller,

the latter model is connected to the induction motor model built earlier with a ‘3-phase

current’ block (which is described in Figure 3.2), three ‘PI’ blocks of stator-current control

designed from Equations (6.26)–(6.40), a load which is described by Equation (6.12), a

‘Speed Command’ block which employs a ‘Repeating Sequence’ block in Simulink library,

and a 3/2 transformation block which is described by Equation (3.5). These models are

connected together to simulate the fuzzy/PI control system with a voltage-input model of the

induction motor, as shown in Figure 6.31.

2

Current

1

Frequency

Sum1 Saturation2

PI

PI Controller

Frequency Control

2

Rotor
speed

1

Speed
command

Figure 6.44 Fuzzy/PI two-stage controller.
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Step 4 Running the Simulink Model of Fuzzy/PI Control System

The model shown in Figure 6.31 is run with following parameters.

Simulation type: variable-step

Max step¼ 0.0001

Min step¼ auto

Initial step¼ 0.0001

Simulation time¼ 1.5 s

The rotor speed commands are as follows,

oo
* ¼ 180 rad=s 0 s � t < 0:5 s

oo
* ¼ 20 rad=s 0:5 s � t � 1:5 s

The following parameters are input into the ‘Speed Command’ block.

Time values¼ [0 0.5 0.5 1.5];

Output values¼ [180 180 20 20].

The ‘load’ block is a ‘Fcn’block inSimulink library,which contains theparameter ‘u(1)�0.00532’
to simulate the load described by Equation (6.12) with coefficient m¼ 0.00 532Nm/(rad/s), and

the input u(1) is the rotor speed.

The simulation results of the fuzzy/PI control system are shown in Figures 6.34–6.36.

6.9 Summary

Based on the two-stage strategy and the heuristics deduced from the field-oriented

principle, a hybrid fuzzy/PI controller is proposed. The controller has almost the same

frequency and current characteristics as the field-oriented controller. During the accelera-

tion/deceleration stage, the stator current magnitude is maintained at the maximum

permissible value to give a large torque, and during the steady-state stage, the stator

current magnitude is adjusted to control the rotor speed. Because the two features of field-

oriented control are exploited, the performance of the two-stage controller is superior to a

scalar controller (Garcia, Stephan and Watanabe, 1994). Besides, the hybrid fuzzy/PI

controller has the advantages of simplicity and insensitivity to motor parameter changes,

input current noise, noise in the measured speed, magnetic saturation, and load torque

variation. Very encouraging results are obtained from a computer simulation using

MATLAB�/Simulink. Due to the excellent speed response over the whole speed range,

the method should find applications in practical industrial drive systems. The possible

developments of the hybrid fuzzy/PI two-stage control are (1) to develop a design method

of the fuzzy controller in the presence of disturbances and parameter variations, (2)

optimizing the fuzzy rules and membership functions of the controller with self-learning

methods such as neuro-fuzzy and genetic algorithm.
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7

Neural-Network-based Direct
Self Control1

7.1 Introduction

Nonlineardynamicalcontrol researchusingtheneuralnetworkhasbeenproposedforalmost two

decades(NarendraandParthasarathy,1990).Recently, ithasbeenproposedthatneuralnetworks

can be applied to parameter identification and state estimation of induction motor control

systems(SimoesandBose,1995).However,completeANNvectorcontrolofinductionmotors is

seldom reported, one of the reasons being the complexity of the controller.

Direct self controller (DSC) is a dynamic, recurrent, and nonlinear signal processing

method which theoretically can give an inverter-fed three-phase induction motor an excellent

performance (Kazmierkowski and Kasprowicz, 1995). Because complicated calculations

are involved, it is difficult to implement DSC using common integrated circuit (IC) circuit

hardware. The DSC algorithms are usually studied by serial calculations on a digital signal

processor (DSP) board. However, as a predictive control scheme, DSC has a steady-state

control error produced by the time delay of the lengthy computations, which depends largely on

the control algorithm and hardware performance. Typical DSP (TMS32010) execution time of

the DSC algorithm is about 250 ms (Habetler et al., 1992), hence the maximum switching

frequency of the inverter has to be limited to 4 kHz. Consequently, DSC is usually suitable for

motor driveswith low switching frequencies.With simple architecture and the inherent parallel

computation capability, a neural-network controller is superior to a DSP board in execution

time and hardware structure. The execution times of neural devices are less than 0.5ms (analog)

1 (a) Portions reprinted by permission of K.L. Shi, T.F. Chan and Y.K. Wong, “Direct self control of induction motor

using artificial neural network,” 1998 IEEE International Conference on Systems, Man, and Cybernetics,

pp. 1696–1701, October 11–14, 1998, San Diego, U.S.A. � 1998 IEEE

(b) Portions reprinted by permission of K.L. Shi, T.F. Chan, Y.K. Wong and S.L. Ho, “Direct self control of induction

motor basedonneural network,” IEEE IndustryApplicationsSociety (IEEE-IAS)2000Meeting, vol. 3, pp. 1380–1387,

October 8–12, 2000, Rome, Italy. � 2000 IEEE.

(c) Portions reprinted by permission of K.L. Shi, T.F. Chan, Y.K. Wong and S.L. Ho, “Direct self control of induction

motor based on neural network,” IEEE Transactions on Industry Applications, 37(5), 2001: 1290–1298.� 2001 IEEE.

Applied Intelligent Control of Induction Motor Drives, First Edition.   Tze-Fun Chan and Keli Shi.
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or 0.8 ms (digital) per neuron (Zaghloul, Meador and Newcomb, 1994). Two neural devices

have been suggested (Simoes andBose, 1995) for inductionmotor control.MicroDevicesMD-

1220, a digital VLSI device, takes 0.8ms to process any synaptic input (or bias) when the clock
rate is 20MHz. Intel 80170NX (Electrically Trainable Analog Neural Network), on the other

hand, is an analog device which takes only 3 ms to process through each layer. This chapter

presents an ANN algorithm with 7 layers and 58 neurons to replace the DSP serial calculations

of the classical DSC system. Because the 58 neurons take only 46.4ms (using the digital MD-

1220) or 21 ms (using the analog 80170NX), the control precision of DSC can be significantly

improved using the neural-network algorithm.

7.2 Neural Networks

In general, a neural model is mathematically represented by a basis function (net function) and

an activation function (neuron function). The selection of these functions often depends on the

applications of the neural network. In other words, application-driven neural models are only

loosely tied to the biological realities. Linear basis function u(wi,x) is a hyperplane-type

function, where wi stands for the weight matrix, x for the input vector, and yi for the bias or
threshold. Mathematically (Kung, 1993),

uiðwi; xÞ ¼
Xn
j¼1

wijxj þ yi ð7:1Þ

where j is the dimension of input.

The net value as expressed by the basis function, ui(wi,x), will be immediately transformed

by an activation function of the neuron. Thus,

yi ¼ f ðuiÞ ð7:2Þ

where yi is net output and f(�) is theactivation function.Theactivation functionsused in this design
include linear, square, log-sigmoid, tan-sigmoid, and hard limit functions (Appendix E).

The memory of a neural network lies in the weights and biases. The neural networks can be

classified, in terms of how the weights and biases are obtained, into three categories (Kung,

1993; Fausett, 1994). They are fixed-weight, unsupervised and supervised networks. In this

design, the fixed-weight networks and the supervised networks are used. The constructions of

the two networks are shown in Figure 7.1. The training data consist of pairs of input and target

produced by the DSC mathematical model.

The characteristic of the fixed-weight network is that the weights and biases are pre-

computed and pre-stored from training data. The fixed-weight network, which is also called the

direct design method, can be used to implement an exact mathematical model. In same cases,

its implementation is easier than the supervised network.

In the supervised network, the weights and biases are adaptively trained by a learning

mechanism, which has been the mainstream of neural model development. The back-

propagation learning rule (Kung, 1993) is used to design the supervised networks for the

DSC, details of which are presented as follows.

It is convenient to regard the threshold y just as an extra weight, that is y ¼ wn þ 1 (Kung,

1993). The net value given by Equation (7.1) can be rewritten as:
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uiðwi; xÞ ¼
Xn þ 1

j¼1

wijzj ¼ WiZ ð7:3Þ

where Wi¼ [wi1wi2 . . . win yi] and Z¼ [x1x2 . . . xn 1]
T

The sum squared error E (cost function) for the set of M patterns of input is given by

Equation (7.16) (Simoes and Bose, 1995)

E ¼ 1

2

XM
m¼1

Em ¼ 1

2

XM
m¼1

XI

i¼1

ðtmi �ymi Þ2 ð7:4Þ

where Em is the squared output error of the output layer, I is the dimension of the output vector,

ym is the actual output vector, and tm is the corresponding desired output vector. The weights

are changed to reduce the cost function E to a minimum value by the gradient descent

method.

The best initial weights and biases for back-propagation networks are created at random

utilizing theminimumandmaximumvalue of each input. The jthweight-update equation of the

ith neuron is given as:

wijðt þ 1Þ ¼ wijðtÞ þ Z
qEm

qwijðtÞ
� �

ð7:5Þ

where Z is the learning rate, wij(t þ 1) is the new weight, and wij(t) is the old weight.

The training strategies may be divided as mutual (whole) and individual (local) (Kung,

1993). In mutual training, the training of all the weights is influenced by all the input/output

values. In individual training, the training of an individual subnet will not be influenced by the

inputs and outputs of other subnets. Pure mutual training is almost impossible for DSC, due to

three reasons. Firstly, the direct self controller is a dynamic (there are integrators), recurrent

(there are hysteresis comparators), and nonlinear system. Secondly, the eight input variables

(Va, Vb, Vc, ia, ib, ic, T
�, jlsmj�) constitute a huge training set. Thirdly, it may take substantially

more iterations to reach a mutual agreement between all the nodes. For simpler and faster

design, the individual training strategy is adopted.

(a) Fixed-weight network

w θ

w and θ are precomputed 
from mathematical model 

ANN 

input output 

(b) Supervised network

w θ

ANN 

input 

output 
+-

target 

Figure 7.1 Neural networks using different training algorithms. (Reproduced by permission of K.L.

Shi, T.F. Chan, Y.K.Wong and S.L. Ho, “Direct self control of inductionmotor based on neural network,”

IEEE Transactions on Industry Applications, 37(5), 2001: 1290–1298. � 2001 IEEE.)
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7.3 Neural-Network Controller of DSC

ADSC scheme consists typically of 3/2 transformations of current and voltage, flux estimation,

torque calculation, flux angle encoder, fluxmagnitude computation, hysteresis comparator, and

optimumswitching table. Figure 7.2 shows aDSC system in theMATLAB�/Simulinkwindow,

which consists of a DSC controller, an inverter, and an induction motor (Shi, Chan and

Wong, 1998).

Based on DSC principle, the neural-network controller is divided into five sub-nets, which

are individually trained: (1) flux estimation sub-net (fixed-weight) with dynamic neurons, (2)

torque calculation sub-net (fixed-weight) with square neurons, (3) flux angle encoder and

magnitude calculation sub-net (supervised) with log-sigmoid neurons and tan-sigmoid neu-

rons, (4) hysteresis comparator sub-net (fixed-weight) with recurrent neurons, and (5) optimum

switching table sub-net (fixed-weight or supervised) with hard limit neurons.

7.3.1 Flux Estimation Sub-Net

Based on Equation (2.6) and 3/2 transformation, the flux estimation is mathematically

expressed as:

dlsdm
dt

¼ ðVa�RsiaÞ� 1

2
ðVb�RsibÞ� 1

2
ðVc�RsicÞ ð7:6Þ

dlsqm
dt

¼
ffiffiffi
3

p

2
ðVb�RsibÞ�

ffiffiffi
3

p

2
ðVc�RsicÞ ð7:7Þ

Flux Angle

Flux
Amplitude

IM

Output
Voltage

Torque
Calculator

Switching
Table Inverter 

Hysteresis
Comparator

i

V
Flux

Flux
estimation

Cartesian to Polar

1
Torque, Flux
Command

Stator
Current

DSC 
controller 

Figure 7.2 A construction of the direct self control system in MATLAB�/Simulink window. (Re-

produced by permission of K.L. Shi, T.F. Chan, Y.K.Wong and S.L. Ho, “Direct self control of induction

motor based on neural network,” IEEE Transactions on Industry Applications, 37(5), 2001: 1290–1298.

� 2001 IEEE.)
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where Va, Vb, Vc are the phase voltages and ia, ib, ic are phase currents, which come from the

voltage and current sensors.

Neuron models can be divided in two basic types, namely static and dynamic. A dynamic

neuron is onewhose output is described by a differential equation (Delgado, Kambhampati and

Warwick, 1995). Hence, the flux estimation sub-net should be constructed using two dynamic

neurons which consist of linear neurons and integrators, as shown in Figure 7.3.

A supervised method, viz. the back-propagation learning rule, is used to train the linear

neurons until they can approximate Equations (7.6) and (7.7).

Figure 7.3 shows the flux estimation network. Using a random generator function of

MATLAB� ‘randnc’, 10 random inputs of the vector [Va, Vb, Vc, ia, ib, ic] are produced. The

target outputs can be obtained from Equations (7.6) and (7.7). Since the network is linear,

convergence can be obtained in relatively few training epochs. For the induction motor being

studied, the weights and biases have been obtained as follows:

w ¼
0:5725 �0:2910 0:7790 �0:3740 �0:7496 �0:0172

�0:3899 1:3073 �0:2469 0:4546 �0:7029 0:4575

" #

y ¼
�0:2029

�0:2836

" #
:

7.3.2 Torque Calculation Sub-Net

Based on Equation (2.6), the torque equation for a DSC system is given by:

T ¼ P

2

2

3
ðlsdmisqs�lsqmi

s
dsÞ ð7:8Þ

where P is the number of motor poles.

λ sdμ 

λ sqμ

Va

Vb

Vc

ic

ib

ia

w1,θ1

∫

∫
w2,θ2

Figure 7.3 A dynamic net of the flux estimation. (Reproduced by permission of K.L. Shi, T.F. Chan,

Y.K. Wong and S.L. Ho, “Direct self control of induction motor based on neural network,” IEEE

Transactions on Industry Applications, 37(5), 2001: 1290–1298. � 2001 IEEE.)
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Since there are four inputs, lsdm; l
s
qm; i

s
ds; and i

s
qs, the data of all training patterns will be huge if

high precision is required. To avoid training difficulties, the fixed-weight method is adopted.

Equation (7.8) may be rewritten as a sum of square functions:

T ¼ P

6
ðlsdm þ isqsÞ2�ðlsqm þ isdsÞ2�ls2dm þ ls2qm þ is2ds�is2qs

h i
ð7:9Þ

where

isds

isqs

" #
¼

1 �1=2 �1=2

0
ffiffiffi
3

p
=2 � ffiffiffi

3
p

=2

" # ia

ib

ic

2
664

3
775

A two-layer, fixed-weight neural network is used to implement Equation (7.9) directly as

shown in Figure 7.4. The first layer is a square activation function with the weight and bias w1

and y1, while the second layer is a linear active function with the weight and bias w2 and y2.

w1 ¼

1 0 0
ffiffiffi
3

p
=2 � ffiffiffi

3
p

=2

0 1 1 �1=2 �1=2

1 0 0 0 0

0 1 0 0 0

0 0 1 �1=2 �1=2

0 0 0
ffiffiffi
3

p
=2 � ffiffiffi

3
p

=2

2
66666666666664

3
77777777777775

y1 ¼

0

0

0

0

0

0

2
6666666666664

3
7777777777775

w2 ¼ ½1�1�1 1 1�1� y2 ¼ ½0� :

Linear Activation 
Function Neuron 

Square Activation 
Function Neuron 

Torque 
T

λs
dμ

λ sqμ

ia

ib

ic

Figure 7.4 Neural network for torque calculation. (Reproduced by permission ofK.L. Shi, T.F. Chan, Y.

K. Wong and S.L. Ho, “Direct self control of induction motor based on neural network,” IEEE

Transactions on Industry Applications, 37(5), 2001: 1290–1298. � 2001 IEEE.)
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7.3.3 Flux Angle Encoder and Flux Magnitude Calculation Sub-Net

The flux angle a and fluxmagnitude f can be calculated from the flux space vectors lsdm and l
s
qm.

Then the flux angle is encoded as B1B2B3.

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ls2dm þ ls2qm

q
ð7:10Þ

a ¼ tan�1ðlsdm=lsqmÞ ð7:11Þ

B1B2B3 ¼ encoderðaÞ ð7:12Þ

In order to obtain accurate results and to simplify the design, Equations (7.10) and (7.11) are

rewritten as:

u ¼ ls2dm þ ls2qm ð7:13Þ

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u�

1

1

" #vuut ð7:14Þ

x ¼ 1=lsqm ð7:15Þ

z ¼ lsdm � x ¼ ½ðlsdm þ xÞ2�lsdm
2�x2�=2 ð7:16Þ

B1B2B3 ¼ encoderðzÞ: ð7:17Þ

The network of flux angle encoder and flux magnitude calculation consists of five nets as

shown in Figure 7.5. Net1with two square neurons implements Equation (7.13). Net2with four

tansig neurons implements Equation (7.14). Net3 with four logsig neurons, net4 with three

square neurons, and net5 with ten hard limit neurons implement Equations (7.15)–(7.17),

respectively.Net1, net4, and net5 are designed using the fixedweightmethod.Net2 and net3 are

designed using the supervised method.

The output layers of the net1, net2, net3, and net4 will be merged with the input layers of

their next sub-nets according to the rule shown in Figure 7.14. Hence, weights and biases of the

output layers of these nets will not be listed hereinafter.

Design of net1 is similar to that used for the torque calculation sub-net described in

Section 7.2. Weight w and bias y of net1 with two square neurons can be directly designed

according to Equation (7.13) as follows:
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wðnet 1Þ ¼
1 0

0 1

" #
yðnet 1Þ ¼

0

0

" #

The back-propagation learning rule is used to train net 2. 500 input/output pairs for training

net 2 are produced by the square root function. After 50 000 training epochs, the sum-squared

error E is less than 0.01. Weight w and bias y of net2 with tansig neurons is as follows.

wðnet 2Þ ¼

�0:1781 �0:1781

2:5008 2:5008

�2:9325 �2:9325

0:5233 0:5233

2
666664

3
777775 yðnet 2Þ ¼

1:5851

6:0920

�6:2367

0:3963

2
666664

3
777775

Figure 7.6 shows the implementation of the flux magnitude calculation using net 1 and net2.

The back-propagation learning rule is used to train net 3 until they can approximate the

reciprocal function. 1000 input/output pairs are produced by the reciprocal function to train

net3. After 100 000 training epochs, the sum-squared error E is less than 0.02.

wðnet 3Þ ¼

�31:6560

2:8829

14:8182

47:8563

2
666664

3
777775 yðnet 3Þ ¼

�0:7218

�0:0022

0:0207

0:7360

2
666664

3
777775

net4

net3

net5

net2net1

Flux 
codes

1/  /

s2
qμ +λ

s
qμλ s

dμλ

s
qμλ

s
dμλ

s
dμλ

s2
dμλ s2

dμ +λ s2
qμλ

Figure 7.5 Individual training scheme for flux angle and magnitude calculations. (Reproduced by

permission of K.L. Shi, T.F. Chan, Y.K. Wong and S.L. Ho, “Direct self control of induction motor based

on neural network,” IEEE Transactions on Industry Applications, 37(5), 2001: 1290–1298. � 2001

IEEE.)
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With three square neurons, net 4 implements Equation (6.13) using the same technique

described in Section 7.2.

wðnet 4Þ ¼
1=2 1=2

�1=2 0

0 �1=2

2
664

3
775 yðnet 4Þ ¼

0

0

0

2
664

3
775

Net5 implements the flux angle encoding directly from lsdm=l
s
qm (output of net4), l

s
dm, and l

s
qm.

To improve the algorithm, the trigonometric function computations of flux angle, which are

necessary in previous DSC schemes, are replaced by logic operations. With reference to

Figure 7.7, the flux angle code (B1 B2B3) can be directly derived from the following equations:

Square activation
function neuron

Tansig activation
function neuron   

Linear activation
function neuron  

λ qs

λ ds

22
qsds λλ +net 1 

net 2 

Figure 7.6 Implementation of the flux magnitude calculation. (Reproduced by permission of K.L. Shi,

T.F. Chan, Y.K. Wong and S.L. Ho, “Direct self control of induction motor based on neural network,”

IEEE Transactions on Industry Applications, 37(5), 2001: 1290–1298. � 2001 IEEE.)
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Figure 7.7 Space flux encoder (B1 B2 B3). (Reproduced by permission of K.L. Shi, T.F. Chan, Y.K.

Wong and S.L. Ho, “Direct self control of induction motor based on neural network,” IEEE Transactions

on Industry Applications, 37(5), 2001: 1290–1298. � 2001 IEEE.)
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B1 ¼
1 if lsqm � 0

0 otherwise

(
ð7:18Þ

B2 ¼

1 if ðlsqm=lsdm � �tan p=3 and lsdm < 0Þ

or if ðlsqm=lsdm <�tan p=3 and lsqm < 0Þ

0 otherwise

8>>><
>>>:

ð7:19Þ

B3 ¼

1 if ðlsqm=lsdm < tan p=3 and lsdm � 0Þ

or if ðlsqm=lsdm � tan p=3 and lsqm < 0Þ

0 otherwise

8>>><
>>>:

ð7:20Þ

If we define:

M ¼ lsqm=l
s
dm � tan p=3 �M ¼ lsqm=l

s
dm < tan p=3 ð7:21Þ

N ¼ lsqm=l
s
dm � �tan p=3 �N ¼ lsqm=l

s
dm <�tan p=3 ð7:22Þ

K ¼ lsdm � 0 �K ¼ lsdm < 0 ð7:23Þ

L ¼ lsqm � 0 �L ¼ lsqm < 0 ð7:24Þ

then the encoder Equations (7.18)–(7.20) can be written as: (positive logic expression)

B1 ¼ L ð7:25Þ

B2 ¼ ðN \ �KÞ [ ð�N \ �LÞ ð7:26Þ

B3 ¼ ð �M \ KÞ [ ðM \ �LÞ: ð7:27Þ

Equations (7.21)–(7.27) show that trigonometric function calculations are not needed for the

flux angle encoding, hence the complexity of implementation is decreased. The flux angle

encoder can be accomplished by the hard limit neurons as shown in Figure 7.8 (Fausett, 1994).

The five nets are linked together to form the network of flux angle encoder and flux

magnitude computation, which has 24 different neurons as shown in Figure 7.9.
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/
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Equation (7.24) is implemented by the neuron N1..

Equation (7.22) is implemented by the neuron N2.2.

Equation (7.21) is implemented by the neuron N3.3.

Equation (7.23) is implemented by the neuron N4.4.

Equation (7.25) is implemented by the output of neuron N1.1.

Equation (7.26) is implemented by the neurons N5, N6, and N9.

Equation (7.27) is implemented by the neurons N7, N8, and N10.

Figure 7.8 Flux angle encoder (net5) with hard limit neurons. (Reproduced by permission of K.L. Shi,

T.F. Chan, Y.K. Wong and S.L. Ho, “Direct self control of induction motor based on neural network,”

IEEE Transactions on Industry Applications, 37(5), 2001: 1290–1298. � 2001 IEEE.)
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Figure 7.9 Network offlux angle encoder and fluxmagnitude computation. (Reproduced by permission

of K.L. Shi, T.F. Chan, Y.K. Wong and S.L. Ho, “Direct self control of induction motor based on neural

network,” IEEE Transactions on Industry Applications, 37(5), 2001: 1290–1298. � 2001 IEEE.)
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7.3.4 Hysteresis Comparator Sub-Net

Using the hysteresis comparator as shown in Figure 7.10, the flux error between stator flux jlsmj
and its command jlsmj� can be limited within �Djlsmj, and the flux error code B6 produced by

the hysteresis comparator will be used to select the space voltage vector (Takahashi and

Noguchi, 1986).

The flux error code B6 can be expressed as:

B6 ¼

0 ðif jlsmj< jlsmj* þ Djlsmj and B6 ¼ 0Þ

or ðif jlsmj< jlsmj*�Djlsmj and B6 ¼ 1Þ

1 ðif jlsmj � jlsmj* þ Djlsmj and B6 ¼ 0Þ

or ðif jlsmj � jlsmj*�Djlsmj and B6 ¼ 1Þ

8>>>>>>>>><
>>>>>>>>>:

: ð7:28Þ

Equation (7.28) represents a recurrent calculation: To obtain B6,we have to do a calculation

using B6, and in order to do the calculation, we have to obtain B6. In order to derive theweight

and bias of network, Equation (7.28) is rewritten as:

B6 ¼
0 if ðw1B6 þ jlsmj�jlsm*j�Djlsmj< 0Þ
1 if ðw1B6 þ jlsmj�jlsm*j�Djlsmj � 0Þ

(
ð7:29Þ

where w1 ¼ 2Djlsmj.
The output B6 is connected as an input, which forms a recurrent network (The MathWorks,

Inc., 1994). Using the basis function given by Equation (7.1) for a neural network, the weight

and bias can be pre-computed. The input of network x¼ [B6, |l|, |l�|]. Its output is B6, its

weight w¼ [2D|l| 1 �1], and its bias y¼ [�D|l|]. The flux hysteresis comparator is

implemented by a recurrent network with hard limit function as shown in Figure 7.11.

Figure 7.10 Flux magnitude hysteresis comparator. (Reproduced by permission of K.L. Shi, T.F. Chan,

Y.K. Wong and S.L. Ho, “Direct self control of induction motor based on neural network,” IEEE

Transactions on Industry Applications, 37(5), 2001: 1290–1298. � 2001 IEEE.)
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The difference between themotor torque T and the torque command T� is comparedwithDT
and the error flag is used to produce a torque error code for selecting the voltage space vector

(Takahashi and Noguchi, 1986), that is.

T*�DT 	 T 	 T* ð7:30Þ

(when lsm rotates in the clockwise direction)

T* 	 T 	 T* þ DT ð7:31Þ

(when lsm rotates in the counterclockwise direction)

The torque hysteresis comparator expressed by Equations (7.30) and (7.31) can be designed

in a similarmanner as the flux hysteresis comparator, which is shown in Figure 7.12. The torque

error code consists of two bits B4 and B5.

Theweight of u1 is [DT 1�1] and the bias of u1 is [0], while theweight of u2 is [DT 1�1] and

the bias of u2 is [DT].

Flux error code B6Flux |λ sμ |

Flux  
command 

Hard limit activation 
function neuron [0 1] 

Figure 7.11 Flux hysteresis comparator of neural network. (Reproduced by permission of K.L. Shi,

T.F. Chan, Y.K. Wong and S.L. Ho, “Direct self control of induction motor based on neural network,”

IEEE Transactions on Industry Applications, 37(5), 2001: 1290–1298. � 2001 IEEE.)

Torque error code     
B4

Torque T

Torque error code     
B5

Torque command T*

u1

u2

Figure 7.12 Torque hysteresis comparator of neural network. (Reproduced by permission of K.L. Shi,

T.F. Chan, Y.K. Wong and S.L. Ho, “Direct self control of induction motor based on neural network,”

IEEE Transactions on Industry Applications, 37(5), 2001: 1290–1298. � 2001 IEEE.)
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7.3.5 Optimum Switching Table Sub-Net

The DSC optimum switching table is expressed in Table 7.1. The flux angle code B1B2B3, the

torque error code B4, B5, and the flux magnitude error code B6 determine the output voltage

codes Sa, Sb, Sc. The output voltage codes of the optimum switch table represent the on/off

status of the inverter switches (Takahashi andNoguchi, 1986).A two-layer networkwith a total

of 26 hard limit neurons is employed to implement the optimum switching table. The first layer

has 23 neurons and the second layer has 3 neurons. Utilizing the 36 pairs of input and output

patterns shown in Table 7.1, the network is trained by a supervised method with perceptron

training rule (The MathWorks, Inc., 1994). After 321 training epochs, the sum squared error E

arrives at zero.

An optimum switching table implemented by a hard limit neural network is shown in

Figure 7.13.

Table 7.1 DSC optimum switching table.

(Sa,Sb,Sc) B1B2B3¼
001

B1B2B3¼
010

B1B2B3¼
011

B1B2B3¼
100

B1B2B3¼
101

B1B2B3¼
110

B4B5B6¼ 010 (0,1,1) (1,1,0) (0,1,0) (1,0,1) (0,0,1) (1,0,0)

B4B5B6¼ 000 (1,1,1) (1,1,1) (0,0,0) (1,1,1) (0,0,0) (0,0,0)

B4B5B6¼ 100 (1,0,1) (0,1,1) (0,0,1) (1,1,0) (1,0,0) (0,1,0)

B4B5B6¼ 011 (0,1,0) (1,0,0) (1,1,0) (0,0,1) (0,1,1) (1,0,1)

B4B5B6¼ 001 (0,0,0) (0,0,0) (1,1,1) (0,0,0) (1,1,1) (1,1,1)

B4B5B6¼ 101 (1,0,0) (0,0,1) (1,0,1) (0,1,0) (1,1,0) (0,1,1)

(Reproduced by permission of K.L. Shi, T.F. Chan, Y.K. Wong and S.L. Ho, “Direct self control of induction motor

based on neural network,” IEEE Transactions on Industry Applications, 37(5), 2001: 1290–1298. � 2001 IEEE.)

B4 

Sa Sb Sc

B5 B6 B3 B2 B1 

W1
θ 1

W2
θ2

W23
θ 23W24

θ 24
W26
θ 26

… …

Figure 7.13 Optimum switching table implemented by neural network. (Reproduced by permission of

K.L. Shi, T.F. Chan, Y.K. Wong and S.L. Ho, “Direct self control of induction motor based on neural

network,” IEEE Transactions on Industry Applications, 37(5), 2001: 1290–1298. � 2001 IEEE.)
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Weights and biases of the trained network of the optimum switching table are as follows:

w1 ¼

�0:3550 0:0369 0:2029 0:0241 0:4239 �0:2690

�0:2885 �0:2401 0:6203 0:4311 �0:1012 0:0932

�0:7253 0:8712 0:8907 0:0085 �0:0325 �0:9459

0:9269 �0:5187 0:5237 0:1668 �0:8606 0:4709

0:6865 0:1340 �0:3676 0:4559 0:8899 �0:4498

0:1286 0:0511 �0:5529 �0:0767 0:9817 �0:9635

0:2845 �0:1546 0:8728 �0:7310 �0:2867 �0:9462

�0:3333 0:8429 �0:6309 0:8661 �0:5424 �0:9813

�0:2998 0:8419 �0:0831 �0:9935 0:3540 0:0070

�0:4301 0:8902 �0:4835 0:5583 �0:2792 �0:6442

�0:1941 �0:4154 0:1969 �0:1388 0:5978 �0:0162

�0:1585 �0:0047 0:3297 �0:9324 0:7765 0:9993

0:9794 �0:6219 �0:7241 �0:4927 0:2107 0:5643

0:3663 �0:5114 �0:7814 �0:3536 0:4784 0:2400

0:4391 �0:3123 �0:4460 �0:4094 0:5830 �0:4980

0:2659 0:4385 �0:4762 0:9414 �0:9226 �0:7044

�0:2422 0:8008 �0:6726 0:9360 �0:0432 0:4455

0:6741 �0:4552 �0:9438 �0:0252 �0:4626 �0:1331

0:2675 �0:0007 �0:2443 0:4314 �0:7834 �0:7321

0:2400 �0:9482 �0:4688 �0:5715 �0:1893 0:4792

�0:4291 �0:2412 0:0102 0:1831 0:9659 �0:7769

�0:7092 �0:8132 �0:7978 0:1633 0:1369 0:6458

0:7693 0:9648 �0:7402 �0:6547 0:9621 �0:2571

2
6666666666666666666666666666666666666666666666666666666666666666666666666666666664

3
7777777777777777777777777777777777777777777777777777777777777777777777777777777775
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y1 ¼

�0:4346

0:2551

0:6687

0:4239

0:5796

0:3578

�0:3410

�0:2098

0:0808

�0:8631

0:9978

�0:2047

0:4015

0:9724

�0:5862

0:5770

�0:9197

�0:5717

0:8491

�0:5232

0:2756

0:9595

0:5518

2
666666666666666666666666666666666666666666666666666666666666666666666666666666666664

3
777777777777777777777777777777777777777777777777777777777777777777777777777777777775

wT
2 ¼

�41:0738 74:4303 �44:9270

�37:7507 46:8430 �48:6175

�6:3355 �97:5883 �79:2760

�41:5267 �5:9237 62:7760

14:9610 �53:1857 �36:3249

29:8704 �9:3693 40:7466

�45:2122 �8:3780 77:5973

�53:3863 �7:1366 11:0640

�22:1699 �0:0711 7:3889

�25:7650 73:9106 58:8391

57:7658 �7:8811 47:1295

32:7479 17:4653 �29:2237

�40:8303 �31:5257 �76:5592

�27:3672 75:5551 �44:8241

24:7633 �69:1695 4:9325

13:0352 40:2875 �122:2603

�28:9413 �49:3222 26:6222

54:7596 33:2641 �48:0328

39:4737 �23:4507 58:4754

�76:8339 �136:3204 �21:3997

15:8100 25:8781 �10:4552

21:6393 6:4111 85:3883

�38:4350 63:6614 �2:7575

2
666666666666666666666666666666666666666666666666666666666666666666666666666666666664

3
777777777777777777777777777777777777777777777777777777777777777777777777777777777775
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y2 ¼
58:6962

�7:9228

48:4529

2
664

3
775

7.3.6 Linking of Neural Networks

When the sub-nets are linked to each other, some neurons of the output layer may be merged

with the input neurons of the next sub-net. For example, if an output neuron of a sub-net has

a linear activation function, it may be merged with the input neuron of the next sub-net. As

shown in Figure 7.14, the activation function of neuron A is linear, and its output is:

xa ¼ w1x1 þ w2x2 þ y1: ð7:32Þ

Let the basis function of neuron B be

u1 ¼ w3xa þ w4xd þ y2: ð7:33Þ

Substituting (7.32) into (7.33),

u1 ¼ w3w1x1 þ w3w2x2 þ w4xd þ w3y1 þ y2: ð7:34Þ

If the new weight and bias of neuron B are denoted by w0 and y02 respectively, then

w0 ¼ ½w3w1 w3w2 w4� ð7:35Þ

y02 ¼ ½w3y1 þ y2�: ð7:36Þ

In this way, neuron A is merged with neuron B as well as the neuron C.

Next
Sub-net

Input  
layer

Previous
Sub-net

Next
Sub-net

Previous
Sub-net

Input  
layer

Output
layer

x1

x2

xa y1

y2

x1

x2
y2

y1

A

B

C

Merging 
Process B

Cx2

x1

xa

xd xd

Figure 7.14 Merging of neurons with linear activation functions. (Reproduced by permission of K.L.

Shi, T.F. Chan, Y.K.Wong and S.L. Ho, “Direct self control of inductionmotor based on neural network,”

IEEE Transactions on Industry Applications, 37(5), 2001: 1290–1298. � 2001 IEEE.)
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If an output neuron of a sub-net has a hard limit function, it can also bemerged into next sub-

net’s input neuron that has also a hard limit function. Employing this strategy, the number of

layers and neurons of the linked network can be decreased.

With the merging of input and output neurons, the five sub-nets (flux estimation, torque

calculation, flux angle encoder and flux magnitude calculation, hysteresis comparator, and

optimum switching table) are assembled into the DSC neural network as shown in Figure 7.15.

The complete neural network consists of 7 layers and 58 neurons. It may be implemented

using special neural devices. If the device 80170NX (Intel analog IC chip) is used, the

processing time for the seven layers will be 21ms. If the device MD-1220 (digital IC chip) is

used, the processing time for 58 neuronswill be 46.4ms (at a clock rate of 20MHz). Parallelism

of neural device computation renders it extremely fast compared with the DSP serial

computation.

7.4 Simulation of Neural-Network-based DSC

AMATLAB�/Simulink programwith Neural Network Toolbox is used to simulate the neural-

network DSC, which is shown in Figure 7.16.

The voltage-input model of an induction motor presented in Chapter 3 is used for the

simulation studies. The parameters of the 7.5 kW induction motor are listed in Appendix B.

The stator flux command and torque command for ANN-DSC and classical DSC simulation

are as follows:

Sa Sb Sc

1/s 1/s

B4 

Vb Va ia ib ic T*Vc

B5 B6 

B1 

B2 
B3 

λs
µ

Figure 7.15 Neural-network implementation of DSC. (Reproduced by permission of K.L. Shi, T.F.

Chan, Y.K. Wong and S.L. Ho, “Direct self control of induction motor based on neural network,” IEEE

Transactions on Industry Applications, 37(5), 2001: 1290–1298. � 2001 IEEE.)
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Stator flux commands:

jlsmj* ¼ 0:86Wb 0 s < t 	 4 s

Torque commands:

T* ¼ 100 Nm 0 s < t 	 0:8 s

T* ¼ 20 Nm 0:8 s < t 	 2 s

T* ¼ �100 Nm 2 s < t 	 2:3 s

T* ¼ 20 Nm 2:3 s < t 	 4 s

Figures 7.17, 7.18 and 7.21 show the torque response, speed response, and flux response of

the classical DSC system with 100 ms controller delay (typical of a DSP-based controller),

while Figures 7.19, 7.20 and 7.22 show the torque response, speed response, and flux response

3
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Hysteresis

Flux
calculation

Angle encoder and 
amplitude computation

2

T* λ*

Switch
table

1

On/off signals 
to inverter 

1

Current

Torque
calculator

Figure 7.16 Neural-network-based DSC in Simulink. (Reproduced by permission of K.L. Shi, T.F.

Chan, Y.K. Wong and S.L. Ho, “Direct self control of induction motor based on neural network,” IEEE

Transactions on Industry Applications, 37(5), 2001: 1290–1298. � 2001 IEEE.)
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Figure 7.17 Torque response of DSC with 100ms delay. (Reproduced by permission of K.L. Shi, T.F.

Chan, Y.K. Wong and S.L. Ho, “Direct self control of induction motor based on neural network,” IEEE

Transactions on Industry Applications, 37(5), 2001: 1290–1298. � 2001 IEEE.)
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Figure 7.18 Speed response of DSC with 100ms delay. (Reproduced by permission of K.L. Shi, T.F.

Chan, Y.K. Wong and S.L. Ho, “Direct self control of induction motor based on neural network,” IEEE

Transactions on Industry Applications, 37(5), 2001: 1290–1298. � 2001 IEEE.)
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Figure 7.19 Torque response of ANN-DSC with 25ms delay. (Reproduced by permission of K.L. Shi,

T.F. Chan, Y.K. Wong and S.L. Ho, “Direct self control of induction motor based on neural network,”

IEEE Transactions on Industry Applications, 37(5), 2001: 1290–1298. � 2001 IEEE.)
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Figure 7.20 Speed response of ANN-DSC with 25ms delay. (Reproduced by permission of K.L. Shi,

T.F. Chan, Y.K. Wong and S.L. Ho, “Direct self control of induction motor based on neural network,”

IEEE Transactions on Industry Applications, 37(5), 2001: 1290–1298. � 2001 IEEE.)
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of the neural-network control system with 25ms controller delay. The results demonstrate that

DSP-based DSC produces large torque and flux errors, whereas the neural-network controller

eliminates almost all these errors. In the simulation studies, it is evident that (1) torque and flux

errors increase with increasing controller delay time, (2) the large torque and flux errors

decrease the robustness of the drive system against current noise and load changes. It can be

concluded that neural-network-based DSC is a more effective algorithm for the control of an

inverter-fed induction motor.

7.5 MATLAB�/Simulink Programming Examples

In this section, two examples are given to illustrate programming of a direct self controller

(DSC) (Shi et al., 2003) and a neural-network-based optimum switching table in MATLAB�/

Simulink.

7.5.1 Programming Example 1: Direct Self Controller

The direct self control system shown in Figure 7.2 consists of the following function blocks:

(1) flux estimation, (2) torque calculation, (3) flux angle encoder and magnitude calculation,

(4) hysteresis comparator, and (5) optimum switching table. The realization of the neural-

network-based controller in MATLAB�/Simulink involves the following steps.

Step 1 Building the Flux Estimation Model

Based on Equations (7.6) and (7.7), a flux estimation model is built as shown in Figure 7.23,

where the gain block represents the stator resistance Rs of the motor (0.294O).
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Figure 7.21 Flux response of DSC with 100ms
delay (time¼ 0–0.2 s). (Reproduced by permission

of K.L. Shi, T.F. Chan, Y.K. Wong and S.L. Ho,

“Direct self control of induction motor based on

neural network,” IEEE Transactions on Industry

Applications, 37(5), 2001: 1290–1298. � 2001

IEEE.)
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Figure 7.22 Flux response of ANN-DSC with

25ms delay (time¼ 0–0.2 s). (Reproduced by per-

mission ofK.L. Shi, T.F. Chan,Y.K.Wong and S.L.
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In the Simulink model of flux estimation, the inputs are the dq-axis stator voltage vector and

dq-axis stator current vector; while the output is the dq-axis flux vector.

Step 2 Building the Torque Calculation Model

Based on Equation (7.8), a torque calculation model is built for the induction motor (in which

the number of poles P¼ 6) as shown in Figure 7.24.

In the torque calculation model, the input dq-axis flux vector is the output of the flux

estimation model and the other input is the dq-axis stator current vector, while the output is the

torque.

Step 3 Building the Flux Angle Encoder and Magnitude Calculation Model

With the dq-axis flux vector obtained in Step 1 and based on Equations (7.10) and (7.11), the
flux angle and magnitude is computed by employing a ‘Cartesian to Polar’ block in Simulink

library, as shown in Figure 7.25.

Based on Equations (7.18), (7.19), and (7.20), a Simulink model of flux angle encoder is

implemented as shown in Figure 7.26.

In the flux angle encoder model, the input is the flux angle and the output is the flux angle

codes (B1 B2 B3) of the DSC optimum switching table in Table 7.1.

1
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Figure 7.24 Simulink model of torque calculation.
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Figure 7.23 Simulink model of flux estimation.
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Figure 7.25 Flux angle and magnitude calculation.
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Step 4 Building the Hysteresis Comparator Model

Based on Equations (7.28), (7.30), and (7.31), the hysteresis comparator may be built by

‘Relay’ blocks in Simulink library as shown in Figure 7.27.

The outputs of the hysteresis comparatormodel are the codes (B4B5B6) of theDSCoptimum

switching table inTable 7.1.When the flux command jlsmj ¼ 0:86Wb,Djlsmj ¼ 0:2Wb, control

error of torqueD|T |¼ 5Nm, the parameters of the hysteresis comparatormodel are as shown in

Table 7.2.

1
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<

>=

>=
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-pi/1.5

-pi/3

pi

0

pi/1.5

1

Angle

Figure 7.26 Simulink model of flux angle encoder.
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B4_B5
Sum1

Relay3
29

Relay2
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3

Flux

2
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1

Torque

Figure 7.27 Simulink model of hysteresis comparator.

Table 7.2 Parameters of Simulink model of the hysteresis comparator.

Block Switch on point Switch off point Output when on Output when off

Relay 1 Equation (7.30) 0 �5 0 1

Relay 2 Equation (7.31) 5 0 1 0

Relay 3 Equation (7.28) 0.88 0.84 1 0

Neural-Network-based Direct Self Control 189



www.manaraa.com

Step 5 Building the Optimum DSC Switching Table

The DSC optimum switching table given in Table 7.1 is implemented by a ‘Combinatorial

Logic’ block in Simulink library, as shown in Figure 7.28.

The inputs of the ‘Combinatorial Logic’ block are the codes (B1 B2 B3 B4 B5 B6) and the

outputs are the output voltage codes (Sa, Sb,Sc). The 36 states of the output voltage codes (Sa,Sb,

Sc) listed in Table 7.1 are used as the parameters of the truth table in the ‘Combinatorial Logic’

block, as shown below:

[1 0 1;1 0 1;1 0 1;1 0 1;1 0 1;1 0 1;1 0 1;1 0 1;0 0 0;0 0 0;0 1 1;0 1 0;1 0 1;1 0 0;1 1 1;1 1 1;0 0 0;

0 0 0;1 1 0;1 0 0;0 1 1;0 0 1;1 1 1;1 1 1;0 0 0;0 0 0;0 1 0;1 1 0;0 0 1;1 0 1;1 1 1;1 1 1;0 0 0;0 0 0;

1 0 1;0 0 1;1 1 0;0 1 0;1 1 1;1 1 1;0 0 0;0 0 0;0 0 1;0 1 1;1 0 0;1 1 0;1 1 1;1 1 1;0 0 0;0 0 0;1 0 0;

1 0 1;0 1 0;0 1 1;1 1 1;1 1 1;1 1 1;1 1 1;1 1 1;1 1 1;1 1 1;1 1 1;1 1 1;1 1 1]

After the above parameters have been input into the ‘Combinatorial Logic’ block, the block

may be used to simulate the optimum switching table.

Step 6 Implementing the Direct Self Controller

The direct self controller is implemented by linking the models of flux estimation, torque

calculation, flux angle encoder and magnitude calculation, hysteresis comparator, and opti-

mum switching table obtained in Step 1 to Step 5, as shown in Figure 7.29.

1

Sa-Sb-ScCombinatorial
Logic

1

B1~B6

Figure 7.28 Simulink model of DSC optimum switching table.
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3

T*

2

Is

1
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Figure 7.29 Simulink model of direct self controller.
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Step 7 Building the Direct Self Control System

To study the performance of theDSC inductionmotor system, the direct self controllermodel is

combinedwith thevoltage-inputmodel of the inductionmotor, a ‘decode’ block, a load block, a

‘T�’ block, and a ‘Transport Delay’ block, as shown in Figure 7.30.

The voltage-input model of the 7.5 kW induction motor used in this study has been built in

Programming example 1 in Section 6.8.

The ‘decode’ block consists of a ‘Combinatorial Logic’ block and a ‘Polar to Cartesian’

block in Simulink library, which is used to transform the output voltage codes Sa, Sb, Sc to the

corresponding dq-axis voltage vector, as shown in Figure 7.31.

The parameters in the truth table of the ‘Combinatorial Logic’ block represent the

amplitudes and angles of the six voltage vectors and zero voltage vector. When the amplitude

of nonzero voltage vector is 270V, the parameters will be as follows.

½0 0; 270�pi=6; 270�5* pi=6; 270�pi=2; 270 pi=2; 270 pi=6; 270 5* pi=6; 0 0�

T

Wo

Vs

Decode

Transport
Delay

20

TL

T*

Scope1

Scope

IM

Vs

Is

T*

Sa_Sb_Sc

DSC

Figure 7.30 Simulink model of direct self control system.

1

Vs

Polar to Cartesian

Combinatorial
Logic

1

Sa_Sb_Sc

Figure 7.31 ‘Decode’ block for transforming the output voltage codes Sa, Sb, Sc to dq-axis voltage

vector.
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The truth table consists of eight vectors (six nonzero vectors and two zero vectors). The first

value of each vector represents the amplitude of the voltage vector and the second value

represents the angle of the voltage vector.

The ‘T�’ block in Figure 7.30 employs a ‘Repeating Sequence’ block in Simulink library to

yield torque commands. To simulate the stator torque commands as listed in Section 7.4, the

‘T�’ block is provided with the following parameters.

Time value¼ [0,0.8, 0.8, 2, 2, 2.3, 2.3, 4]

Output value¼ [100 100, 23, 23, �100, �100, 22, 22]

The ‘Transport Delay’ block in Figure 7.30 simulates the controller delay. When the

controller delay is 100ms, the parameter of the block is 0.0001.

Step 8 Running the Simulink Model

The Simulink model of direct self control system shown in Figure 7.29 is run with following

parameters.

Simulation type: Fixed-step

Fixed-step size¼ 0.00 002 s

Simulation time¼ 4 s

Controller delay¼ 100ms

The simulation results are obtained as shown in Figures 7.17 and 7.18. When a ‘XY Graph’

block in Simulink library is connected to the two outputs of the flux angle and magnitude

calculation in Figure 7.25, the flux response shown in Figure 7.21 is obtained. To simulate the

control system without the controller delay, the parameter of the ‘Transport Delay’ block

should be set to 0.

7.5.2 Programming Example 2: Neural-Network-based Optimum
Switching Table

In this example, the optimum switching table is implemented by a two-layer neural network

with hard limit neurons. The neural network is trained by a supervised method with perceptron

training rule (The MathWorks, Inc., 1994).

Step 1 Entering Samples of Input and Target into Workspace of MATLAB�

From the truth table in Table 7.1, the codes (B1B2B3B4B5B6) have 36 combinations and these

are used as input samples for training the neural network. The codes are listed below:

B1 B2 B3 B4 B5 B6

0 0 1 0 1 0

0 0 1 0 0 0

0 0 1 1 0 0

0 0 1 0 1 1

0 0 1 1 0 1

0 0 1 0 0 1

0 1 0 0 1 0
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0 1 0 0 0 0

0 1 0 1 0 0

0 1 0 0 1 1

0 1 0 1 0 1

0 1 0 0 0 1

0 1 1 0 1 0

0 1 1 0 0 0

0 1 1 1 0 0

0 1 1 0 1 1

0 1 1 1 0 1

0 1 1 0 0 1

1 0 0 0 1 0

1 0 0 0 0 0

1 0 0 1 0 0

1 0 0 0 1 1

1 0 0 1 0 1

1 0 0 0 0 1

1 0 1 0 1 0

1 0 1 0 0 0

1 0 1 1 0 0

1 0 1 0 1 1

1 0 1 1 0 1

1 0 1 0 0 1

1 1 0 0 1 0

1 1 0 0 0 0

1 1 0 1 0 0

1 1 0 0 1 1

1 1 0 1 0 1

1 1 0 0 0 1

Enter the above samples as a [6� 36] array into the workspace of MATLAB� and name the

array as variable ‘P’ which is used later as input samples for training the network.

In Table 7.1, the output voltage codes (Sa, Sb, Sc) have 36 states corresponding to the 36 input

samples. The 36 states are used as target samples for training the neural network and they are

listed below.

Sa Sb Sc

0 1 1

1 1 1

1 0 1

0 1 0

1 0 0

0 0 0

1 1 0

1 1 1

0 1 1

1 0 0

0 0 1

0 0 0

0 1 0

0 0 0

0 0 1

1 1 0

1 0 1
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1 1 1

1 0 1

1 1 1

1 1 0

0 0 1

0 1 0

0 0 0

0 0 1

0 0 0

1 0 0

0 1 1

1 1 0

1 1 1

1 0 0

0 0 0

0 1 0

1 0 1

0 1 1

1 1 1

Enter the above samples as a [3� 36] array into the workspace of MATLAB� and name the

array as variable ‘T’ which is used as target samples.

Step 2 Training the Neural-Network-based Optimum Switching Table

The following program is based on Neural Network Toolbox Version 1.0 (The MathWorks,

Inc., 1994), 2.0 or 3.0 on MATLAB� 4.x or MATLAB� 5.x platforms.

S1 = 23; % Set 23 neurons in first layer

tp=[100 500]; %Settrainingparameterstoshow resultsof100epochs

% Max training epochs is 500

[W1,b1] = initp(P,S1); % Initialize weight and bias of first-layer net

[W2,b2] = initp(S1,T); % Initialize weight and bias of second-layer net

nntwarn off % Turn off the warning

A1 = simup(P,W1,b1); % Yield data from first-layer net

[W2,b2,epochs] = trainp(W2,b2,A1,T,tp); % Training weight and bias

% of the second-layer net

The above training program is run repeatedly until the sum squared error (SSE) of the

performance program arrived at zero. In some cases, SSE cannot arrive at zero within 500

epochs due to the random initial parameters in the training program.A successful training result

with SSE¼ 0 in 463 epochs is listed as follows.

TRAINP: 0/500 epochs, SSE¼ 58.

TRAINP: 100/500 epochs, SSE¼ 31.

TRAINP: 200/500 epochs, SSE¼ 27.

TRAINP: 300/500 epochs, SSE¼ 21.

TRAINP: 400/500 epochs, SSE¼ 20.

TRAINP: 463/500 epochs, SSE¼ 0.

The network training performance is shown in Figure 7.32.
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Upon entering ‘W1’, ‘b1’, ‘W2’, and ‘b2’ into the MATLAB�window, the weight matrices

and bias vectors of the network are shown on computer screen. They are listed following

Figure 7.13 in Section 7.3 with name w1, y1, w2, and y2, respectively.

Step 3 Building the Neural-Network-based Optimum Switching Table

Theneural-network-basedoptimumswitching tableconsistsof a ‘MatrixGain’block,a ‘Constant’

block, a ‘Sum’ block, and a ‘hardlim’ block in Simulink library, as shown in Figure 7.33.

The ‘MatrixGain’ block stores theweightmatrix, the ‘Constant’ block stores the bias vector,

and the ‘hardlim’ block simulates the hard limit neurons and the number of the neurons

as determined by the size of weight matrix. The blocks are grouped and duplicated as two
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Figure 7.32 Network training performance: the sum squared error (SSE) arrived at zero after 463

training epochs.
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Figure 7.33 A neural network with hard limit neurons.
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neural-network blocks named as ‘Net1’ and ‘Net2’ to simulate the first layer and second layer

of the network, respectively. The weight matrices and bias vectors obtained in Step 2 are

directly input into the ‘Matrix Gain’ blocks and the ‘Constant’ blocks in the ‘Net1’ and ‘Net2’,

respectively.

Step 4 Verifying the Neural-Network-based Optimum Switching Table

To verify the neural-network-based optimum switching table, the ‘Combinatorial Logic’ block

that represented the optimum switching table in Figure 7.29 are replaced by ‘Net1’ and ‘Net2’.

The modified Simulink model of direct self controller is shown in Figure 7.34.

With a controller delay of 25 ms and other simulation parameters same as those in Example 1,

the simulation results of the direct self control system with neural-network-based optimum

switching table shown in Figures 7.19 and 7.20 are obtained. When a ‘XY Graph’ block is

connected to the outputs of the flux angle and magnitude calculation in Figure 7.25, the flux

response in Figure 7.22 can be viewed.

7.6 Summary

The flexible neural-network structures are used to implement the computationally intensive

DSC principle. Based on the understanding of DSC, the fixed weight and supervised

networks with individual training strategy are employed for the ANN controller design.

Neural-network-based DSC can greatly reduce the execution time of the controller, hence

the steady-state control error is eliminated almost completely. The results of simulation

demonstrate that the neural-network algorithm has a better precision in the torque and flux

responses than the classical DSC method. Using neural-network techniques, hardware

implementation of DSC presents less problems and it is envisaged that ANN-DSC induction

motor drives will gain wider acceptance in future. The possible developments of the neural-

network-based direct self control are (1) to improve the neural network in order to decrease

the neuron types, number and layers, (2) to design a neural-network-based sensorless DSC

by developing a sub-network of speed estimation, (3) to develop a neural-network-based

DSC controller whose performance is immune to disturbances and motor parameter

variations.
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Figure 7.34 Simulink model of direct self controller with neural-network-based optimum switching

table.
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8

Parameter Estimation Using
Neural Networks

8.1 Introduction

A three-phase induction motor for drive applications may be described and studied by a set of

differential equations.Generally speaking, the differential equations give satisfactory results in

motor transient analysis when the input voltages are smooth functions. In a modern machine

drive, however, themotor is invariably fed from a power electronic converter, typically a pulse-

width modulated (PWM) inverter. Non-differentiable points therefore exist in the motor

current due to rapid turn-on or turn-off of the ideal power electronic switches, resulting in

possible divergences when the motor drive simulation program is executed. Design and

simulation of an induction motor drive require an accurate knowledge of the machine

parameters. When differential operators are used for parameter measurement, magnitude of

noise may be amplified and the computational accuracy will be degraded. In order to secure

convergence in performance analysis of an ac motor drive, integration loops are usually

employed instead of the differential operations.

Methods of parameter estimation for an induction motor have been proposed in many

publications. In (Moon and Keyhani, 1994), electrical parameters of induction motor are

estimated under standstill conditions, using transfer functions with the acquired time-domain

data. In (Attaianese et al., 1998), model reference adaptive control (MRAC) is employed to

estimate the parameters of an induction motor. In (Zai, Li-Cheng, DeMarco, and Lipo, 1992),

the extended Kalman filter (EKF) is used to measure the rotor time constant of an induction

motor. Recently, artificial intelligence (AI) techniques, such as fuzzy logic (Bose and

Patel, 1998), Artificial Neural Network (ANN) (Wishart and Harley, 1995), and genetic

algorithm (Pillay, Nolan, and Haque, 1997), have been applied to motor parameter estimation.

Online parameter estimation of an induction motor has been reported (de Souza Ribeiro

et al., 2000). However, most published methods using the conventional differential equations

have complex structures and some of them may be sensitive to noise. In (Zamora and Garcia-

Cerrada, 2000), some integral operators have been used to simplify parameter estimation.
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Among the various AI techniques, neural networks are particularly suitable for motor

drive applications as they have the ability to process and acquire information in a complex

system. Nonlinearities and uncertainties in parameters of the motor drive system can

therefore be modeled with ease with the aid of neural networks. In this chapter, integral

models of an induction motor will be implemented by using an artificial neural network

(ANN) approach. By using the proposed ANN-based integral models, almost all the

machine parameters can be derived directly from the measured data, namely the stator

currents, stator voltages and rotor speed. With the estimated parameters, load, stator flux,

and rotor speed may be estimated.

8.2 Integral Equations Based on the ‘T’ Equivalent Circuit

In the stator reference frame, the ‘T’ equivalent circuit (Slemon, 1989) of an induction motor is

shown in Figure A.2 of Appendix A, where

ir ¼ ls � Lsis

LM
: ð8:1Þ

Substituting (8.1) into the conventional differential equations in which the state variables are

the stator currents and rotor currents, the induction motor ‘T’ equivalent circuit model

(Slemon, 1989) can be expressed in terms of five nonlinear equations in the stator reference

frame:

dids

dt
¼ kTðRrLs þ LrRsÞids �Pooiqs � kTRrlds �PookTLrlqs � kTLrVds ð8:2Þ

diqs

dt
¼ kTðRrLs þ LrRsÞiqs þPooids � kTRrlqs þPookTLrlds � kTLrVqs ð8:3Þ

dlds
dt

¼ Vds �Rsids ð8:4Þ

dlqs
dt

¼ Vqs �Rsiqs ð8:5Þ

doo

dt
¼ 2

3

P

2J
ðlds iqs � lqs idsÞ� TL

J
� Foo

J
ð8:6Þ

where kT ¼ 1

L2M � LrLs
.

The stator fluxes may be obtained by integrating (8.4) and (8.5):

ldsðtÞ� ldsð0Þ ¼
ðt
0

Vdsdt�Rs

ðt
0

idsdt ð8:7Þ
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lqsðtÞ� lqsð0Þ ¼
ðt
0

Vqsdt�Rs

ðt
0

iqsdt: ð8:8Þ

With the initial conditions lds(0)¼ 0 and lqs(0)¼ 0, substitution of Equations (8.7) and (8.8)

into Equation (8.2), Equations (8.3) and (8.6) results in the integral forms of ids, iqs, and oo,

as follows:

idsðtÞ� idsð0Þ ¼ kTðRrLs þ LrRsÞ
ðt
0

idsdt�P

ðt
0

ooiqsdtþ kTRrRs

ðt
0

ðt
0

idsdt

0
@

1
Adt

þPkTLrRs

ðt
0

oo

ðt
0

iqsdt

0
@

1
Adt� kTLr

ðt
0

Vdsdt� kTRr

ðt
0

ðt
0

Vdsdt

0
@

1
Adt�PkTLr

ðt
0

oo

ðt
0

Vqsdt

0
@

1
Adt

;

iqsðtÞ� iqsð0Þ ¼ kTðRrLs þ LrRsÞ
ðt
0

iqsdtþP

ðt
0

ooidsdtþ kTRrRs

ðt
0

ðt
0

iqsdt

0
@

1
Adt

�PkTLrRs

ðt
0

oo

ðt
0

idsdt

0
@

1
Adt� kTLr

ðt
0

Vqsdt� kTRr

ðt
0

ðt
0

Vqsdt

0
@

1
AdtþPkTLr

ðt
0

oo

ðt
0

Vdsdt

0
@

1
Adt

;

ooðtÞ�ooð0Þ ¼ 2

3

P

2J
Rs

ðt
0

ids

ðt
0

iqsdt� iqs

ðt
0

idsdt

0
@

1
Adtþ 2

3

P

2J

ðt
0

iqs

ðt
0

Vdsdt� ids

ðt
0

Vqsdt

0
@

1
Adt

� 1

J

ðt
0

TLdt� F

J

ðt
0

oodt

:

The induction motor can therefore be modeled by the above equations that involve

explicitly only three variables, namely, ids, iqs and oo. For convenience, when ids(0)¼ 0,

iqs(0)¼ 0, and oo(0)¼ 0, the above integral equations may be written in the following

concise forms:

ids ¼ A1X1 þA2X2 þA3X3 þA4X4 þA5X5 þA6X6 þA7X7 ð8:9Þ

iqs ¼ A1Y1 �A2Y2 þA3Y3 �A4Y4 þA5Y5 þA6Y6 �A7Y7 ð8:10Þ

oo ¼ C1Z1 þC2Z2 þC3Z3 þC4Z4 ð8:11Þ
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where

X1 ¼
ðt
0

idsdt Y1 ¼
ðt
0

iqsdt A1 ¼ kTðRrLs þ LrRsÞ

X2 ¼
ðt
0

ooiqsdt Y2 ¼
ðt
0

ooidsdt A2 ¼ �P

X3 ¼
ðt
0

ðt
0

idsdt

0
@

1
Adt Y3 ¼

ðt
0

ðt
0

iqsdt

0
@

1
Adt A3 ¼ kTRrRs

X4 ¼
ðt
0

oo

ðt
0

iqsdt

0
@

1
Adt Y4 ¼

ðt
0

oo

ðt
0

idsdt

0
@

1
Adt A4 ¼ PkTLrRs

X5 ¼
ðt
0

Vdsdt Y5 ¼
ðt
0

Vqsdt A5 ¼ � kTLr

X6 ¼
ðt
0

ðt
0

Vdsdt

0
@

1
Adt Y6 ¼

ðt
0

ðt
0

Vqsdt

0
@

1
Adt A6 ¼ � kTRr

X7 ¼
ðt
0

oo

ðt
0

Vqsdt

0
@

1
Adt Y7 ¼

ðt
0

oo

ðt
0

Vdsdt

0
@

1
Adt A7 ¼ �PkTLr

Z1 ¼
ðt
0

ids

ðt
0

iqsdt� iqs

ðt
0

idsdt

0
@

1
Adt C1 ¼ 2

3

P

2J
Rs

Z2 ¼
ðt
0

iqs

ðt
0

Vdsdt� ids

ðt
0

Vqsdt

0
@

1
Adt C2 ¼ 2

3

P

2J

Z3 ¼
ðt
0

TLdt C3 ¼ � 1

J

Z4 ¼
ðt
0

oodt C4 ¼ � F

J

Equations (8.9)–(8.11) expresses a set of linear functions of ids iqs and oo with variables

X¼ [X1, X2, X3, X4, X5, X6, X7], Y¼ [Y1, Y2, Y3, Y4, Y5, Y6, Y7], and Z¼ [Z1, Z2, Z3, Z4],

ð8:12Þ
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which may in turn be calculated by integral operations on the measured stator voltages,

stator currents, and rotor speed. If the coefficients A1, A2, A3, A5, A6, C2, and C4 are known,

the parameters P, Rs, Ls, F, J, and the rotor time constant, may be obtained from

Equation (8.12):

P ¼ �A2; Rs ¼ � A3

A6

; Ls ¼ A5A3 �A1A6

A2
6

; J ¼ 2

3

P

2C2

; F ¼ � JC4;

Rr

Lr
¼ A6

A5

ðRotor time constantÞ: ð8:13Þ

If the coefficients, A1, A2, A3, A4, A5, A6, A7, C1, C2, C3, and C4 are known, the induction

motor model is completely described by Equations (8.9)–(8.11).

It is well known that the rotor parameters, Rr and Lr cannot be independently obtained

(Stephan, Bodson, and Chiasson, 1994) from the ‘T’ equivalent circuit because the motor

equations are not sufficient for identification of these parameters. Only when the

assumption Lr¼ Ls is made can all the parameters be obtained from Equation (8.12). In

order to reduce the complexity without loss in computational accuracy, the ‘G’ equivalent
circuit is frequently used instead (Slemon, 1989). Using the ‘G’ equivalent circuit, all the
machine parameters can be derived from the corresponding integral equations as detailed

in Section 8.3.

8.3 Integral Equations based on the ‘G’ Equivalent Circuit

The ‘G’ equivalent circuit (Slemon, 1989) of an inductionmotor in the stator reference frame is

shown in Figure A.1 of Appendix. As in the case of the ‘T’ equivalent circuit, the induction

motor model based on a ‘G’ equivalent circuit may be described by five nonlinear differential

equations in the stator reference frame:

dids

dt
¼ kGðLsRR þ LRRsÞids �Poo iqs � kGRRlds �PkGLRoolqs � kGLRVds ð8:14Þ

diqs

dt
¼ kGðLsRR þ LRRsÞiqs þPoo ids � kGRRlqs þPkGLRoolds � kGLRVqs ð8:15Þ

dlds
dt

¼ �Rsids þVds ð8:16Þ

dlqs
dt

¼ �Rsiqs þVqs ð8:17Þ

doo

dt
¼ 2

3

P

2J
ðldsiqs � lqsidsÞ� TL

J
� Foo

J
ð8:18Þ

where kG ¼ 1

LsLR � L2s
.
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The mechanical Equation (8.18) for the ‘G’ equivalent circuit is the same as Equation (8.6)

for the ‘T’ equivalent circuit. The integrals of the stator fluxes Equations (8.16) and (8.17) for

the ‘G’ equivalent circuit are the same as Equations (8.7) and (8.8) for the ‘T’ equivalent circuit.

Substituting Equations (8.7) and (8.8) into Equations (8.14), (8.15), and (8.18), the integral

forms of the ‘G’ equivalent circuit may be derived:

idsðtÞ� idsð0Þ ¼ kGðLsRR þ LRRsÞ
ðt
0

idsdt�P

ðt
0

ooiqsdtþ kGRRRs

ðt
0

ðt
0

idsdt

0
@

1
Adt

þPkGRs

ðt
0

oo

ðt
0

iqsdt

0
@

1
Adt� kGLR

ðt
0

Vdsdt� kGRR

ðt
0

ðt
0

Vdsdt

0
@

1
Adt�PkGLR

ðt
0

oo

ðt
0

Vqsdt

0
@

1
Adt

;

iqsðtÞ� iqsð0Þ ¼ kGðLsRR þ LRRsÞ
ðt
0

iqsdtþP

ðt
0

ooidsdtþ kGRRRs

ðt
0

ðt
0

iqsdt

0
@

1
Adt

�PkGRs

ðt
0

oo

ðt
0

idsdt

0
@

1
Adt� kGLR

ðt
0

Vqsdt� kGRR

ðt
0

ðt
0

Vqsdt

0
@

1
AdtþPkGLR

ðt
0

oo

ðt
0

Vdsdt

0
@

1
Adt

;

ooðtÞ�ooð0Þ ¼ 2

3

P

2J
Rs

ðt
0

ids

ðt
0

iqsdt� iqs

ðt
0

idsdt

0
@

1
Adtþ 2

3

P

2J

ðt
0

iqs

ðt
0

Vdsdt� ids

ðt
0

Vqsdt

0
@

1
Adt

� 1

J

ðt
0

TLdt� F

J

ðt
0

oodt

:

The above integral equations may be written as:

ids ¼ B1X1 þB2X2 þB3X3 þB4X4 þB5X5 þB6X6 þB7X7 ð8:19Þ

iqs ¼ B1Y1 �B2Y2 þB3Y3 �B4Y4 þB5Y5 þB6Y6 �B7Y7 ð8:20Þ

oo ¼ C1Z1 þC2Z2 þC3Z3 þC4Z4: ð8:21Þ
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where X1�X7, Y1� Y7, Z1� Z4 and C1�C4 are the same as the corresponding variables in

Equations (8.9)–(8.11), while B1�B7 are defined by:

B1 ¼ kGðRRLs þ LRRsÞ

B2 ¼ �P

B3 ¼ kGRRRs

B4 ¼ PkGLRRs

B5 ¼ � kGLR

B6 ¼ � kGRR

B7 ¼ �PkGLR

ð8:22Þ

It should be noted that the elements of coefficient matrix [A] in Equation (8.9) and the elements

of coefficient matrix [B] in Equation (8.19) are identical, despite the fact that corresponding

elements may be given by different expressions.

If the coefficients B1, B2, B3, B4, B5, B6, B7,C1, C2,C3, and C4 are known, all the parameters

of the induction motor may be estimated from Equation (8.22):

P ¼ �B2; Rs ¼ � B3

B6

; Ls ¼ B5B3 �B1B6

B2
6

; LR ¼ B5L
2
s

B5Ls � 1
; RR ¼ B6ðLsLR � L2s Þ;

J ¼ 2

3

P

2C2

; F ¼ � JC4: ð8:23Þ

8.4 Parameter Estimation of Induction Motor Using ANN

Accurate knowledge of the parameters of the induction motor model is required for analysis

and control purposes. Specifically, we wish to identify the coefficients A1�A7 in Equa-

tion (8.9) or Equation (8.10), B1�B7 in Equation (8.19) or Equation (8.20), and C1�C4 in

Equation (8.11) or Equation (8.21). An examination of the equations concerned reveals that

the quantities ids, iqs, and oo may each be modeled by a single-layer linear network with

multiple inputs and a single output. The neural network contains only a neuron which is

characterized by a linear transfer function.With obtained sample pairs of input and target, the

linear network can be trained by aMATLAB� function ‘newlind’ inNeural Network Toolbox

(The MathWorks Inc., 2008). Specific network weights and biases may be obtained to

minimize the mean square error by using this MATLAB� function.

A Simulink model of induction motor drive is used for the parameter estimation as shown in

Figure 8.1.

The Simulink model consists of a ‘Signal Source’ block, a ‘SVPWM’ block, a ‘Load’ block,

and an ‘Induction Motor’ block. The ‘Signal Source’ block outputs three-phase 60Hz
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sinusoidal signals. The ‘Load’ block is a ‘Constant’ block in Simulink library to simulate a

20N.m load. The ‘SVPWM’ block simulates a space-vector PWM inverter, which outputs

dq-axis voltages Vds and Vqs with a magnitude of 300V to drive the induction motor.

The ‘Induction Motor’ block is a voltage-input model of induction motor based on the ‘T’

equivalent circuit, which is described in Section 3.4 and a programming example in Section 6.8.

8.4.1 Estimation of Electrical Parameters

Figure 8.2 shows a training scheme of neural network with a single linear neuron for obtaining

the coefficients A1�A7 or B1�B7. The stator voltages (Vds, Vqs), stator currents (ids, iqs), are

input to the integral module which gives the seven variables X1, X2, X3, X4, X5, X6, and X7 to the

single-layer neural network ANN1. The error between the output of ANN1 and the stator

current ids (target) is used to train the network parameters.

Upon completion of the training, the coefficients A1�A7 of the ‘T’ equivalent circuit (or

B1�B7 of the ‘G’ equivalent circuit) are obtained from the weights of the network ANN1 by

Equations (8.13) and (8.23). The biases of the network should be very close to zero if the

training process converges. Consequently, ANN1 may be used to give ids in the integral

Equations (8.9) and (8.19) with a feedback line as shown in Figure 8.3.

By using a similar method, a second neural network ANN2with only a linear neuronmay be

designed and trained to simulate iqs in the integral Equations (8.10) or (8.20) with a feedback

line as shown in Figure 8.3.

Speed

Torque

Scope1

Scope

SVPWM
Inverter

20 N.m

Load

Vdq

Load

w

T

is

Induction
Motor

Signal
Source

3-phase
60Hz

Figure 8.1 Simulink model of induction motor drive with a SVPWM inverter.
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Figure 8.2 Training scheme of ANN-based electrical model of induction motor (oo 6¼ 0).
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After the training is completed, the ANN-based electrical model of the induction motor is

established as shown in Figure 8.3.

The electrical parameters of induction motor may be also estimated without rotor speed

information. Under blocked-rotor conditions, that is, rotor speed oo¼ 0, the electrical

equations of the induction motor are also valid. Hence, a simple method to obtain the electrical

parameters is presented in Figure 8.4. When the rotor speedoo¼ 0, Equations (8.9) and (8.19)

are reduced to

ids ¼ A1X1 þA3X3 þA5X5 þA6X6 ð8:24Þ

ids ¼ B1X1 þB3X3 þB4X4 þB6X6: ð8:25Þ

where [A1, A3, A5, A6]¼ [B1, B3, B5, B6]. Equation (8.24) or (8.25) therefore expresses ids as a

linear function of the variables X1, X3, X5, X6, obtainable with the motor under blocked-rotor

conditions.

As shown in Figure 8.4, the stator voltages (Vds, Vqs) and stator currents (ids, iqs) under

blocked-rotor conditions are input into the integral module to yield the four outputs X1, X3, X5,

x1
x2
x3
x4
x5
x6

Vds
Vqs

∫ , ∫∫
ids

ANN1

x7

y1
y2
y3
y4
y5
y6
y7

∫ , ∫∫
iqs

ANN2 

ωo

Eq.(8.12) 

Eq.(8.12) 

Figure 8.3 ANN-based electrical model of induction motor.
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Figure 8.4 Training scheme of estimating electrical parameter of induction motor with condition

oo¼ 0.
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and X6 to the neural network ANN3. After the training of ANN3 is completed, the coefficients

A1, A3, A5, and A6 are determined and the electrical parameters in the ‘T’ equivalent circuit are

obtained from Equation (8.13).

If the number of poles P is known, the remaining three coefficients A2, A4, and A7 in

Equation (8.9) may be computed from the coefficients, A1, A3, A5, and A6 already obtained:

A2 ¼ �P; A4 ¼ P
A3A5

A6

; A7 ¼ PA5:

The coefficients B1, B3, B5, and B6 in the ‘G’ equivalent circuit are also equal to the weights of
the linear network ANN3. Consequently, all the electrical parameters in the ‘G’ equivalent
circuit may be obtained from Equation (8.23). If P is known, the remaining three coefficients

B2,B4, and B7 in Equation (8.19) can be determined from the coefficients B1,B3,B5,B6 already

obtained:

B2 ¼ �P; B4 ¼ P
B3B5

B6

B7 ¼ PB5:

When themotor is under blocked-rotor condition, the rotor load equals the rotor torque.With

a connection line from the torque port to load port, the Simulinkmodel of inductionmotor drive

in Figure 8.1 may simulate the motor under blocked-rotor condition as shown in Figure 8.5.

8.4.2 ANN-based Mechanical Model

Figure 8.6 shows the proposed training scheme for the ANN-based mechanical model. With

the load torque TL set to zero, the networkANN4with a single linear neuron is used to compute

the rotor speed using the inputs Z1, Z2, and Z4 from the integral module. The error between the

output of ANN4 and the rotor speed (target) is used to train the network parameters.

After the training is completed, the coefficients C1, C2, and C4 in Equation (8.11) are

obtained from theweights of ANN4. All themechanical parameters of the ‘T’ or ‘G’ equivalent
circuit may be obtained fromEquation (8.13). The input Z3, which is the integral of load torque
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Figure 8.5 Simulink model of induction motor drive with motor under blocked-rotor condition.
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withweight (�1/J), is then added into the trained network to complete themechanicalmodel as

shown in Figure 8.7.

The four linear neural networks for inductionmotor parameter estimation are summarized in

Table 8.1.

Z1

Z2
Vds

ids
iqs

Vqs

ANN4 

M
ea

su
re

m
en

t d
at

a 

ωo

ωo

Z4

Eq. 
(8.12) 

TL

∫

Figure 8.7 Completed ANN-based mechanical model of induction motor.

Table 8.1 Four linear neural networks for induction motor parameter estimation.

Name Function Input Output Neuron and

training function

ANN1 Electrical model Equation

(8.9), Equation (8.19)

X1, X2, X3, X4, X5,

X6, and X7

ids One linear neuron Training

function ‘newlind’

ANN2 Electrical model Equation

(8.10), Equation (8.20)

X1, X2, X3, X4, X5,

X6, and X7

iqs One linear neuron Training

function ‘newlind’

ANN3 Electrical model (oo¼ 0)

Equation (8.24)

X1, X3, X5, and X6 ids One linear neuron Training

function ‘newlind’

ANN4 Mechanical model Equation

(8.11), Equation (8.21)

Z1, Z2, and Z4 oo One linear neuron Training

function ‘newlind’

Z1

Z2Vds

ids
iqs

Vqs

ANN4 
M

ea
su

re
m

en
t d

at
a 

ωo

ωo

Z4

Eq. 
(8.12) 

∫

Figure 8.6 Training scheme of ANN-based mechanical model of induction motor with TL¼ 0.
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8.4.3 Simulation Studies

Simulation studies are carried out on a three-phase induction motor (‘Motor 1’ in Appendix B)

with the following ‘T’ equivalent circuit parameters:

Stator resistance Rs¼ 0.294O
Stator inductance Ls¼ 0.0424H

Mutual inductance LM¼ 0.041H

Rotor resistance Rr¼ 0.156O
Rotor inductance Lr¼ 0.0417H

Total inertia of motor J¼ 0.8 kgm2

Viscous friction coefficient F¼ 0.1Nm s/rad

Number of poles P¼ 6

The corresponding electrical parameters of the ‘G’ equivalent circuit are:

Stator resistance Rs¼ 0.294O
Stator inductance Ls¼ 0.0424H

Rotor resistance RR¼ 0.167O
Rotor inductance LR¼ 0.0446H

The Simulink model of sampling data consists of the induction motor drive in Figure 8.1 and a

‘Sample Model’ block based on Equation (8.12), as shown in Figure 8.8.

To simulate current measurement noise, two ‘Random Number’ blocks are introduced to

inject Gaussian white noise to the stator currents ids and iqs before the data is sampled. The

‘Equation (8.12)’ block outputs the variables X1�X7 and the variables Z1� Z4 based on

Equation (8.12). The four ‘ToWorkspace Input’ blocks are employed to store samples of vector

X¼ [X1, X2, X3, X4, X5, X6, X7], variable Y (stator current ids), vector Z¼ [Z1, Z2, Z4], and

variable W (rotor speed oo), respectively.

From themotor simulation results, thevariablesX1�X7 areobtained from the ‘Equation (8.12)’

block based on ten sets of data acquired at 0.04 s intervals for training the network ANN1. Since

the model in Equation (8.9) is linear, a fairly small number of data samples suffice to ensure

convergence in the ANN training. The values of the input samples are listed below:

x1 0.94692 � 0.22678 0.72640 0.71875 � 0.79240 0.43001 � 0.49282 0.12109 0.14841 � 0.72756

x2 � 1.98520 0.58155 � 9.75612 15.27895 0.19296 � 4.41782 7.49746 � 20.83614 19.24096 � 18.17365

x3 0.00755 0.01918 0.03498 0.05994 0.06303 0.05244 0.04821 0.04847 0.04608 0.04035

x4 0.11399 0.50539 1.19009 2.37681 4.15943 6.02133 8.04367 10.44622 13.30458 16.44377

x5 0.46359 � 0.68192 0.69432 � 0.41458 � 0.01956 0.42286 � 0.69515 0.64079 � 0.41185 � 0.08396

x6 0.00459 0.00311 0.00363 0.00600 0.00258 0.00572 0.00320 0.00237 0.00355 � 0.00103

x7 0.04492 0.20875 0.41957 0.79826 1.21903 1.72559 2.41915 3.03928 3.94426 4.82695

The following ten samples of the stator current extracted over the same time period are used

as the targets for the training:

y 43.33115 � 197.23973 292.50222 � 278.07246 127.70671 40.97748 � 190.20088 275.99749 � 258.02238 138.12246
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where y is ids.

With the above sample pairs of input and target, the linear network is trained by aMATLAB�

function ‘newlind’ (The MathWorks Inc., 2008). The following is a program for training the

linear network.

P¼6; %Pole number of motor is 6

y1¼y(2:11)’;

x1¼x(2:11,:)’;

net ¼ newlind(x1,y1); %Training neural network

Y ¼ sim(net,x1); %Y is outputs of the trained network

E¼y1-Y; %Error of Y and sample outputs

SSE¼sumsqr(E) %Calculate sum squared error

Weight¼net.IW{1,1} %Output weight of network

A¼Weight;

Biase¼net.b{1} %Output bias of network

Ls¼(A(5)�A(3)-A(1)�A(6))/A(6)/A(6) %Calculate Ls in ‘T’ equivalent

%circuit based on Equation(8.13)
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T
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Figure 8.8 Simulink model of sampling data.
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Rs¼-A(3)/A(6) %Calculate Rs in ‘T’ equivalent

%circuit based on Equation(8.13)

RrLr¼A(6)/A(5) %Calculate Rr/Lr in ‘T’ equivalent

%circuit based on Equation(8.13)

LR¼A(5)�Ls�Ls/(A(5)�Ls-1) %Calculate LR in ‘G’ equivalent

%circuit based on Equation (8.23)

RR¼A(6)�(Ls�LR-Ls�Ls) %Calculate LR in ‘G’ equivalent

%circuit based on Equation (8.23)

It should be noted that value of matrix [A] in ‘T’ equivalent circuit and matrix [B] in ‘G’
equivalent circuit are identical.

After running above MATLAB� program, the following results are shown in computer

screen.

SSE¼ 1.7565e-020

Weight¼ [� 216.7; � 3; � 526.7; � 422.4; 478.9; 1791.5; 1436.6]

Bias¼� 3.9154e-011

Ls¼ 0.0424

Rs¼ 0.2940

RrLr¼ 3.7410

LR¼ 0.0446

RR¼ 0.1668

The sum squared error (SSE) between the output of ANN1 and the target ids arrives at

1.7565e-020. The network weights are found to be ½ � 216:7 � 3 � 526:7 � 422:4
478:9 1791:5 1436:6� and the network bias is � 3.9154e-011, which may be considered

to be equal to zero. The network weights are the coefficients of [A] in the ‘T’ equivalent circuit

or of [B] in the ‘G’ equivalent circuit, that is,

½A1;A2;A3;A4;A5;A6;A7� ¼ ½� 216:7 � 3 � 526:7 � 422:4 478:9 1791:5 1436:6�
ð8:26Þ

½B1;B2;B3;B4;B5;B6;B7� ¼ ½� 216:7 � 3 � 526:7 � 422:4 478:9 1791:5 1436:6�
ð8:27Þ

With the above coefficients of [A], the parameters of the ‘T’ equivalent circuit are obtained

from Equation (8.13):

P ¼ 6;RS ¼ 0:294O; Ls ¼ 0:0424 H; and rotor time constant Rr=Lr ¼ 3:741 s:

In a similar manner, with the above coefficients of [B], the parameters of the ‘G’ equivalent
circuit are obtained from Equation (8.23):

P ¼ 6;RS ¼ 0:294O; Ls ¼ 0:0424 H;RR ¼ 0:167O; LR ¼ 0:0446 H:
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For training of ANN4 in Figure 8.7, the following data sets, which are simulation results

obtained from the ‘Equation (8.12)’ block in Figure 8.8, are used as inputs,

z1 � 8.57757 � 20.20110 � 27.29074 � 37.56554 � 50.62150 � 57.04781 � 68.12547 � 75.90780 � 84.74541 � 95.57365

z2 3.86035 8.91320 12.53849 16.88888 22.20011 25.73052 30.69521 34.73047 39.12689 44.17282

z4 0.07599 0.29626 0.66223 1.17180 1.82807 2.63694 3.60462 4.73717 6.04035 7.52038

while the following samples of rotor speed, also obtained from the ‘Equation (8.12)’ block in

Figure 8.8, are used as the targets.

oo 3.33687 7.39816 11.20479 14.46507 18.06499 22.06658 26.21527 30.44186 34.77437 39.24546

The program for training ANN4 is shown below:

P¼6; %Pole number of motor is 6

Z¼ z(2:11,:)’;

w1¼w(2:11)’;

net ¼ newlind(Z,w1); %Training neural network

Y ¼ sim(net,Z); %Y is outputs of the trained network

E¼w1-Y; %Error of Y and sample outputs

SSE¼sumsqr(E) %Calculate sum squared error

Weight ¼ net.IW{1,1} %Output bias of network

Bias ¼ net.b{1} %Output bias of network

D¼net.IW{1,1};

J¼P/3/D(2) %Calculate J based on Equation (8.13)

F¼-J�D(3) %Calculate F based on Equation (8.13)

C¼[D(1), D(2), -1/J, D(3)] %See Equation(8.28)

After running the above code, the following results are displayed on the computer screen.

SSE¼ 8.7306e-025

Weight¼ [0.7350, 2.5000, � 0.1250]

Bias¼ 7.5608e-013

J¼ 0.8000

F¼ 0.1000

C¼ 0.7350 2.5000 � 1.2500 � 0.1250

With the sample pairs of input and target obtained, the linear network is trained by the

MATLAB� function ‘newlind,’ the sum squared error (SSE) between the output of ANN4 and

the target oo arrives at 8.7306e-25. The network weights are ½0:735 2:500 � 0:1250�, and
the network bias is 7.5608e-13. The network bias may be considered to be equal to zero. The

network weights are the coefficients [C] in the mechanical model in Equation (8.11), that is,
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½C1; C2; C4� ¼ ½0:7350 2:5000 � 0:1250�. From Equation (8.12), C3¼� 1/J, hence

½C1;C2;C3;C4� ¼ ½0:7350 2:5000 � 1=J � 0:1250� ð8:28Þ
Since the pole number P¼ 6 (obtained from the weights of ANN1), the following mechanical

parameters of the induction motor are obtained from Equation (8.13):

J ¼ 2

3

P

2C2

and F ¼ � JC4; i:e:; J ¼ 0:8 kg:m2 and F ¼ 0:1 N:m:s=rad:

8.5 ANN-based Induction Motor Models

The induction motor model may be implemented by using the ANN-based electrical model

(Figure 8.3) and mechanical model (Figure 8.7), as shown in Figure 8.9.

A double integral of a sinusoidal function may result in data overflow in the computer

memory, caused by the second integral operation on an integration constant which has arisen

from the first definite integral. When the period of program simulation is long, data overflow

may occur when evaluating the double integrals in Equation (8.12).

To overcome the above difficulty, Equations (8.9) to (8.12) are rewritten as

idsðtÞ� idsð0Þ ¼
ðt
0

ðA1X
0
1 þA2X

0
2 þA3X

0
3 þA4X

0
4 þA5X

0
5 þA6X

0
6 þA7X

0
7Þdt ð8:29Þ

iqsðtÞ� iqsð0Þ ¼
ðt
0

ðA1Y
0
1 �A2Y

0
2 þA3Y

0
3 �A4Y

0
4 þA5Y

0
5 þA6Y

0
6 �A7Y

0
7Þdt ð8:30Þ

ooðtÞ�ooð0Þ ¼
ðt
0

ðC1Z
0
1 þC2Z

0
2 þC3Z

0
3 þC4Z

0
4Þdt ð8:31Þ
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Figure 8.9 ANN model of induction motor.
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where

X0
1 ¼ ids Y 0

1 ¼ iqs A1 ¼ kTðRrLs þ LrRsÞ

X0
2 ¼ ooiqs Y 0

2 ¼ ooids A2 ¼ �P

X0
3 ¼

ðt
0

idsdt Y 0
3 ¼

ðt
0

iqsdt A3 ¼ kTRrRs

X0
4 ¼ oo

ðt
0

iqsdt Y 0
4 ¼ oo

ðt
0

idsdt A4 ¼ PkTLrRs

X0
5 ¼ Vds Y 0

5 ¼ Vqs A5 ¼ � kTLr

X0
6 ¼

ðt
0

Vdsdt Y 0
6 ¼

ðt
0

Vqsdt A6 ¼ � kTRr

X0
7 ¼ oo

ðt
0

Vqsdt Y 0
7 ¼ oo

ðt
0

Vdsdt A7 ¼ �PkTLr

Z 0
1 ¼ ids

ðt
0

iqsdt� iqs

ðt
0

idsdt C1 ¼ 2

3

P

2J
Rs

Z 0
2 ¼ iqs

ðt
0

Vdsdt� ids

ðt
0

Vqsdt C2 ¼ 2

3

P

2J

Z 0
3 ¼ TL C3 ¼ � 1

J

Z 0
4 ¼ oo C4 ¼ � F

J

ð8:32Þ

Note that only simple integral operators are involved when evaluating the variables X, Y and

Z in Equation (8.32). Based on Equations (8.29)–(8.32), an improved ANN model for the

induction motor is shown in Figure 8.10.

For comparison in simulation studies, the ANNmodel in Figure 8.10 is packed in a Simulink

block (ANN IM) and is connected in parallel with the conventional induction motor model

(Figure 8.1), as shown in Figure 8.11.
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A study of direct-on-line starting of the induction motor is made in order to compare the

performance of the ANN model with the conventional model in predicting motor transient

operation. At time t¼ 0 the motor is at standstill with a constant load torque.

Pertinent data for the simulation study are shown below:

Parameters of the induction motor: listed under ‘Motor 1’ of Appendix B.

Frequency of three-phase sinusoidal signal source¼ 60Hz
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Vds
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ANN1
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∫

∫

Figure 8.10 ANN model of induction motor without involving double integrals.
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Figure 8.11 Neural network and conventional models of induction motor drive.
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Amplitude of three-phase sinusoidal signal source¼ 0.866 V

Switching frequency of SVPWM¼ 20 kHz

Modulation index¼ 0.866

Magnitude of the SVPWM output¼ 300V

Load torque¼ 20Nm

The moment of inertia JL of the load¼ 0.4 kgm2

Simulation type: Variable-step

Max-step size¼ 0.00002 s

Simulation time¼ 2 s.

The rotor speed computed from the conventional model is shown in Figure 8.12a and that

computed from the ANN model is shown in Figure 8.12b. It is noticed that the ANN model

gives similar motor run-up performance as the conventional model.

The above comparison of the conventional model and the ANN model has shown that the

ANN modeling approach is feasible. The ANN model can be established through proper

training of the neural networks using the data acquired from a simulation model or from an

actual motor drive.

8.6 Effect of Noise in Training Data on Estimated Parameters

The data acquired in a practical inverter-fed inductionmotor drivewill usually contain noise. In

order to test the efficacy of the ANN-based model under such conditions, Gaussian white noise

with various variance values is injected into the stator currents ids and iqs before the data

samples are input to the neural networks for training. The two ‘Random Number’ blocks in

Figure 8.8 are connected and added into the stator currents with various variances. Figure 8.13a

shows the current waveform of ids without noise and Figure 8.13b shows the corresponding

waveformwhen noisewith a variance value of unity is present. FromTable 8.2, it is noticed that

the estimated mechanical parameters J and F are practically unaffected by noise. The error in
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Figure 8.12 Computed motor run-up performance: (a) Conventional model; (b) ANN model.
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the estimated electrical parameters, on the other hand, increases when the noise content

increases. With a noise variance of unity, the estimated values of Ls, LR and RR are smaller than

the ideal values by 6.1 %, 5.8 %, and 13.4 %, respectively, whereas the estimated value of Rs is

larger than the ideal value by 8.4 %. The value of the estimated rotor resistance is therefore

more sensitive to noise.

Despite the errors in the individual estimated machine parameters, the ANN model gives

satisfactory prediction of the speed response as reflected by the small rotor speed error shown in

the right-most column of Table 8.2, where o0 and o01 are the rotor speed computed from the

ANN model and the conventional model, respectively.

8.7 Estimation of Load, Flux and Speed

Using the estimated parameters of the inductionmotor obtained in Section 8.5, load, stator flux,

and rotor speed may be estimated, respectively.

8.7.1 Estimation of Load

To estimate the load torque, Equation (8.6) is written as

TL ¼ 2

3

P

2
ðldsiqs � lqsidsÞ� J

doo

dt
�Foo ð8:33Þ

Substituting Equations (8.7) and (8.8) into Equation (8.33), load torque TLmay be estimated

by the following equation.

TLðtÞ�TLð0Þ ¼ 2

3

P

2
Rs ids

ðt
0

iqsdt� iqs

ðt
0

idsdt

0
@

1
Aþ 2

3

P

2
iqs

ðt
0

Vdsdt� ids

ðt
0

Vqsdt

0
@

1
A�J

doo

dt
�Foo

ð8:34Þ
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With the motor parameters obtained in Section 8.4, the load torque of the induction motor

may be calculated by Equation (8.34). A Simulink model of load estimation is shown in

Figure 8.14.

Themodel consists of the inductionmotor drive (Figure 8.1), a ‘Load Estimation’ block, and

an ‘Analog Filter Design’ block in Simulink library. The ‘Load Estimation’ block is used to

estimate the load torque based on Equation (8.34). The ‘Analog Filter Design’ block is used to

reduce the differential noise in the estimated load and noise caused by the differential operation

of rotor speed in Equation (8.34).

The Simulink model of load estimation as shown in Figure 8.14 is run with the following

parameters.

Parameters of the induction motor: listed under ‘Motor 1’ of Appendix B.

Frequency of three-phase sinusoidal signal source¼ 60Hz

Amplitude of three-phase sinusoidal signal source¼ 0.866V

Switching frequency of SVPWM¼ 20 kHz

Modulation index¼ 0.866

Magnitude of the SVPWM output¼ 300V

The moment of inertia JL of the load¼ 0.4 kgm2

Simulation type: Variable-step

Max-step size¼ 0.00002 s

Simulation time¼ 0.4 s

Stator
current

Stator
voltage

Torque

load

To Workspace1

estload

To Workspace
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Inverter

Rotor speed
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idq
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Signal
Source
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Figure 8.14 A Simulink model of load estimation.
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With a desired passband frequency of 500Hz (3142 rad/s), the ‘Analog Filter Design’ block has

following parameters.

Design method: Butterworth

Filter type: Lowpass

Filter order¼ 1

Passband edge frequency (rad/s)¼ 3142 rad/s

The simulation results are shown in Figure 8.15 and two arrays ‘load’ and ‘Est_load’ are stored

in MATLAB� workspace at the end of the simulation.

Mean square error between the actual load torque and the estimated load torque may be

calculated by

error ¼ 1

n

Xn
1

ðload � estloadÞ2 ð8:35Þ

where n is the number of data samples.

The followingMATLAB� code is used to calculate themean square error between the actual

load torque and the estimated load torque:

s=size(load); %Acquire sample number

e=0;

for i=1:s(1)

e=e+(load(i)-Est_load(i))^2;

end

error=e/s(1) %Yield mean square error
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Figure 8.15 Actual load and estimated load from simulation; (a) Actual load; (b) Estimated load.
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The calculation result shows that the mean square error of actual load and estimated load is

0.0153 with 155 276 samples taken in 0.4 s.

Whenmeasurement noisewith variance of 1 A andmean of 0 A are added into the measured

stator currents ids and iqs, themean square error of actual load and estimated load is 0.1503with

155 239 samples taken in 0.4 s. The simulation result is shown in Figure 8.16.

8.7.2 Estimation of Stator Flux

To estimate the stator flux, Equations (8.2) and (8.3) arewritten in the following concise forms:

Aalds þBalqs ¼ Ca ð8:36Þ

Ablds þBblqs ¼ Cb ð8:37Þ
where

Aa ¼ kTRr

Ba ¼ PookTLr

Ca ¼ kTðRrLs þ LrRsÞids �Pooiqs � kTLrVds � dids

dt

Ab ¼ �PookTLr

Bb ¼ kTRr

Cb ¼ kTðRrLs þ LrRsÞiqs þPooids � kTLrVqs � diqs

dt
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Figure 8.16 Estimated load with noise.
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Because Bb¼Aa and Ab¼�Ba, Equations (8.36) and (8.37) may be written as

Aa Ba

�Ba Aa

" #
V

lqs

" #
¼

Ca

Cb

" #
: ð8:38Þ

The stator flux in Equation (3.38) is solved as follows:

lds

lqs

" #
¼

AaCa �BaCb

A2
a þB2

a

BaCa þAaCb

A2
a þB2

a

2
6664

3
7775: ð8:39Þ

From Equation (8.12), the elements in Equation (8.39) are as follows:

Aa ¼ �A6 ð8:40Þ

Ba ¼ �A7oo ð8:41Þ

Ca ¼ A1ids þA2ooiqs þA5Vds � dids

dt
ð8:42Þ

Cb ¼ A1iqs �A2ooids þA5Vqs � diqs

dt
ð8:43Þ

The following values are obtained from Equation (8.26),

A1 ¼ � 216:7

A2 ¼ � 3

A5 ¼ 478:9

A6 ¼ 1791:5

A7 ¼ 1436:6

The elements in Equation (8.39) may be expressed as follows.

Aa ¼ � 1791:5 ð8:44Þ

Ba ¼ � 1436:6oo ð8:45Þ

Ca ¼ � 216:7ids � 3ooiqs þ 478:9 Vds � dids

dt
ð8:46Þ
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Cb ¼ � 216:7iqs þ 3ooids þ 478:9 Vqs � diqs

dt
ð8:47Þ

Based on Equation (8.39), a Simulink model for estimating stator flux is built as shown in

Figure 8.17.

The Simulink model consists of the induction motor drive as shown in Figure 8.1, a ‘Flux

calculate’ block and a ‘Flux Estimation’ block. The ‘Flux calculate’ block performs a

conventional flux estimation based on Equations (8.7) and (8.8). The ‘Flux Estimation’ block

performs the differential flux estimation based on Equation (8.39). Stator flux vector (lds, lqs)
yielded by the conventional flux estimation method and flux vector (^lds, ^lqs) yielded by the
differential flux estimation method are stored into MATLAB� workspace with four arrays

named ‘Fds,’ ‘Fqs,’ ‘Est_Fds,’ and ‘Est_Fqs,’ respectively.

Due to the SVPWM inverter and the differential operations of dq-axis stator currents in

Equations (8.50) and (8.51), four low-pass filters are used to reduce ripples of input (Vds,Vqs, ids,

iqs) caused by the PWM inverter and two output low-pass filters are used to reduce the ripples of

output (^lds, ^lqs) caused by the differential operations. The six filters are simulated by ‘Analog

Filter Design’ block in Simulink library and they are set inside of the ‘Flux Estimation’ block in

Figure 8.17.
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Figure 8.17 Simulink model of stator flux estimation.
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TheSimulinkmodel of stator flux estimation in Figure 8.17 is runwith following parameters.

Parameters of the induction motor are listed under ‘Motor 1’ of Appendix B.

Frequency of three-phase sinusoidal signal source is 60Hz

Amplitude of three-phase sinusoidal signal source is 0.866V

Switching frequency of SVPWM is 20 kHz

Modulation index is 0.866

Magnitude of the SVPWM output is 300V

Load¼ 20N m

The moment of inertia JL of the load is 0.4 kgm2

Simulation type: Variable-step

Max-step size¼ 0.00002 s

Simulation time¼ 0.4 s

With a desired passband frequency of 500Hz (3142 rad/s), the six ‘Analog Filter Design’

blocks in the ‘Flux Estimation’ block have following parameters.

Design method: Butterworth

Filter type: Lowpass

Filter order¼ 1

Passband edge frequency (rad/s)¼ 3142 rad/s

The simulation results are shown in Figure 8.18 and Figure 8.19 and the four arrays ‘uds,’ ‘uqs,’

‘Est_uds,’ and ‘Est_uqs’ are stored in MATLAB� workspace after the simulation run.

With the two arrays ‘Fds’ and ‘Est_Fds’ in MATLAB� workspace, the following

MATLAB� program is used to calculate the mean square error of direct-axis flux obtained

by the conventional estimation method and the differential estimation method:
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Figure 8.18 Flux vector components lds and lqs of conventional estimation method; (a) Flux lds of
conventional estimation; (b) Flux lqs of conventional estimation.
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s=size(Fds); %Acquire sample number

e=0;

for i=1:s(1)

e=e+(Fds(i)-Est_Fds(i))^2;

end

error=e/s(1) %Yield mean square error

The computed result shows that themean square error of direct-axis flux is 0.0016with 289 274

samples during 0.4 s.

In a similar manner, the followingMATLAB� program is used to calculate the mean square

error of quadrature-axis flux obttained from the conventional estimation method and the

differential estimation method:

s;=size(Fqs); %Acquire sample number

e=0;

for i=1:s(1)

e=e+(Fqs(i)-Est_Fqs(i))^2;

end

error=e/s(1) %Yield mean square error

The computed result shows that the mean square error of quadrature-axis flux is also 0.0016

with 289 274 samples during 0.4 s.

The differential estimation method does not suffer from error accumulation caused by

integrators in conventional flux estimation (Shi et al., 1999).

8.7.3 Estimation of Rotor Speed

Using the estimated parameters of the induction motor obtained in Section 8.5, we can also

estimate the rotor speed.
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Figure 8.19 Flux vector components ^lds and ^lqs of differential estimation method; (a) Flux ^lds of
differential estimation; (b) Flux ^lqs of differential estimation.
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With lds(0)¼ 0, lqs(0)¼ 0, substitution of Equations (8.7) and (8.8) into Equations (8.2)

and (8.3) separately enables the following equations to be derived:

dids

dt
¼ kTðRrLs þ LrRsÞids �Pooiqs þ kTRrRs

ðt
0

idsdtþPkTLrRsoo

ðt
0

iqsdt

� kTLrVds � kTRr

ðt
0

Vdsdt�PkTLroo

ðt
0

Vqsdt

; ð8:48Þ

diqs

dt
¼ kTðRrLs þ LrRsÞiqs þPooids þ kTRrRs

ðt
0

iqsdt�PkTLrRsoo

ðt
0

idsdt

� kTLrVqs � kTRr

ðt
0

VqsdtþPkTLroo

ðt
0

Vdsdt

; ð8:49Þ

oo PkTLr

ðt
0

VqsdtþPiqs �PkTLrRs

ðt
0

iqsdt

0
@

1
A ¼

� kTLrVds � kTRr

ðt
0

Vdsdtþ kTðLsRr þ LrRsÞids þ kTRrRs

ðt
0

idsdt� dids

dt

; ð8:50Þ

oo �PkTLr

ðt
0

Vdsdt�Pids þPkTLrRsoo

ðt
0

idsdt

0
@

1
A ¼

� kTLrVqs � kTRr

ðt
0

Vqsdtþ kTðLsRr þ LrRsÞiqs þ kTRrRs

ðt
0

iqsdt� diqs

dt

: ð8:51Þ

For convenience, the above integral equations may be written in the following concise

forms.

ooð�A7X1 �A2X2 �A4X3Þ ¼ A5X4 þA6X5 þA1X6 þA3X7 þA8X8 ð8:52Þ

ooðA7Y1 þA2Y2 þA4Y3Þ ¼ A5Y4 þA6Y5 þA1Y6 þA3Y7 þA8Y8 ð8:53Þ
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where

X1 ¼
ðt
0

Vqsdt Y1 ¼
ðt
0

Vdsdt A7 ¼ �PkTLr

X2 ¼ iqs Y2 ¼ ids A2 ¼ �P

X3 ¼
ðt
0

iqsdt Y3 ¼
ðt
0

idsdt A4 ¼ PkTLrRs

X4 ¼ Vds Y4 ¼ Vqs A5 ¼ � kTLr

X5 ¼
ðt
0

Vdsdt Y5 ¼
ðt
0

Vqsdt A6 ¼ � kTRr

X6 ¼ ids Y6 ¼ iqs A1 ¼ kTðRrLs þ LrRsÞ

X7 ¼
ðt
0

idsdt Y7 ¼
ðt
0

iqsdt A3 ¼ kTRrRs

X8 ¼ dids

dt
Y8 ¼ diqs

dt
A8 ¼ � 1

ð8:54Þ

Equations (8.52) and (8.53) are functions of the rotor speed and these may further bewritten

as:

ooDa ¼ Db ð8:55Þ

ooQa ¼ Qb ð8:56Þ
where

Da ¼ �A7X1 �A2X2 �A4X3

Db ¼ A5X4 þA6X5 þA1X6 þA3X7 þA8X8

Qa ¼ A7Y1 þA2Y2 þA4Y3

Qb ¼ A5Y4 þA6Y5 þA1Y6 þA3Y7 þA8Y8

: ð8:57Þ

From Equations (8.49) and (8.50), it is seen that Da and Qb are q-axis sinusoidal variables,

whereasQa andDb are d-axis sinusoidal variables. From Equations (8.55) and (8.56),oo ¼ Db
Da

and oo ¼ Qb
Qa
. However, they cannot be used to estimate the rotor speed directly because the

sinusoidal variables Da and Qa may equal zero. In order to avoid division by zero, the

magnitudes of the sinusoidal variables
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Da2 þQa2

p
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Db2 þQb2

p
are employed for

estimation of the rotor speed.
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Squaring Equations (8.55) and (8.56) adding the resulting equations,

o2
oðDa2 þQa2Þ ¼ ðDb2 þQb2Þ ð8:58Þ

Equation (8.58) can thus be written as follows:

oo

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Da2 þQa2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Db2 þQb2

p
ð8:59Þ

where
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Da2 þQa2

p
is magnitude of the q-axis sinusoidal variables and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Db2 þQb2

p
is

magnitude of the d-axis sinusoidal variables.

When magnitude of the sinusoidal variables is larger than zero, the rotor speed may be

estimated by

oo ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Db2 þQb2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Da2 þQa2

p : ð8:60Þ

Finally, substitution of Equations (8.57) into (8.60) gives the following equation:

oo ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA5X4þA6X5þA1X6þA3X7þA8X8Þ2þðA5Y4þA6Y5þA1Y6þA3Y7þA8Y8Þ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�A7X1�A2X2�A4X3Þ2þðA7Y1þA2Y2þA4Y3Þ2

q
ð8:61Þ

With the value of the matrix [A] obtained in Equation (8.26), Equation (8.61) may be used to

estimate the rotor speed.

A Simulink model of rotor speed estimation is built as shown in Figure 8.20.

The Simulink model consists of the induction motor block (Figure 8.1) and a ‘Speed

Estimation’ block. The ‘Speed Estimation’ block is used to estimate the rotor speed according

Speed

Est_Speed

To Workspace2

Speed

To Workspace1

is

Vs

wo

Speed Estimation

SVPWM
Inverter

20 N.m

Load

Vdq

Load

w

T

is

Induction
Motor

Signal
Source

3-phase
60Hz

Figure 8.20 Simulink model of rotor speed estimation.
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to Equation (8.61). The ‘ToWorkspace1’ and ‘ToWorkspace2’ blocks in Figure 8.20 are used

to store the actual rotor speed and the estimated speed intoMATLAB�workspacewith the two

arrays ‘Speed’ and ‘Est_Speed,’ respectively.

Four low-pass filters are used to reduce ripples of inputs (Vds, Vqs, ids, iqs) caused by the

SVPWM inverter (Equations (8.50) and (8.51)) and one output low-pass filter is used to reduce

the ripples of the outputoo. These five filters are simulated by ‘Analog Filter Design’ blocks in

Simulink library and they are set inside of the ‘Speed Estimation’ block in Figure 8.20.

The Simulink model of rotor speed estimation in Figure 8.20 is run with following

parameters.

Parameters of the induction motor are listed under ‘Motor 1’ of Appendix B.

Frequency of three-phase sinusoidal signal source is 60Hz

Amplitude of three-phase sinusoidal signal source is 0.866V

Switching frequency of SVPWM is 20 kHz

Modulation index is 0.866

Magnitude of the SVPWM output is 300V

Torque¼ 20Nm

The moment of inertia JL of the load is 0.4 kgm2

Simulation type: Variable-step

Max-step size¼ 0.000001 s

Simulation time¼ 1.5 s

When the desired passband frequency is 500Hz (3142 rad/s), the five ‘Analog Filter Design’

blocks have the following parameters:

Design method: Butterworth

Filter type: Lowpass

Filter order¼ 1

Passband edge frequency (rad/s)¼ 3142 rad/s

The simulation results are shown in Figure 8.21 and the two arrays ‘Speed’ and ‘Est_Speed’ are

stored in MATLAB� workspace.

With the two arrays ‘Speed’ and ‘Est_Speed’ in MATLAB� workspace, the following

MATLAB� program is used to calculate the mean square error between the actual rotor speed

and the estimated speed.

s=size(Speed); %Acquire sample number

e=0;

for i=1:s(1)

e=e+(Speed(i)-Est_Speed(i))^2;

end

error=e/s(1) %Yield mean square error

The result shows that the mean square error of the actual rotor speed the and estimated speed is

0.0132 with 1 908 527 samples during 1.5 s.

The simulation results demonstrate that the rotor speed estimation method has a wide

estimation range even near zero speed and the estimation error is small. However, the
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estimationmethod yields only absolute value of the rotor speed. Using themodel of rotor speed

estimation, a sensorless FOC will be given in next section.

8.8 MATLAB�/Simulink Programming Examples

In this section, two examples are given to illustrate programming of a field-oriented control

(FOC) system and sensorless control of induction motor using MATLAB�/Simulink.

8.8.1 Programming Example 1: Field-Oriented Control (FOC) System

Field-oriented control (FOC) is a vector control method as both the magnitude and the phase of

current and voltage vectors are regulated. Using field-oriented control, an induction motor

drive can be made to exhibit satisfactory torque and speed responses because both the flux

magnitude and the torque are controlled to desired values. A Simulink model of field-oriented

control system of induction motor is built with following steps.

Step 1 Building a Flux Estimation Model

With the given value of stator resistance Rs (0.294O in this example) and based on

Equation (8.7), Equation (8.8), and Cartesian to polar transformation block, a Simulink model

of flux estimation is built as shown in Figure 8.22.
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Figure 8.21 Simulation result of rotor speed estimation; (a) Actual rotor speed; (b) Estimated speed.

2

Mag

1

Ang0.294

Rs

1/s em

Cartesian to Polar

2

is

1

vs

Figure 8.22 Simulink model of flux estimation.
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In the flux estimation model, the inputs are the dq-axis stator voltage vector and dq-axis

stator current vector; while the output is magnitude and angle of dq-axis flux vector.

Step 2 Building a Field-Oriented Control System Model

A Simulink model of field-oriented control (FOC) system is shown in Figure 8.23.

The field-oriented control system model consists of a ‘Speed�’ block, a ‘Flux�’ block, four
‘PI’ blocks, a ‘Park(for)’ block, a ‘Park(rev)’ block, a ‘Flux calculation’ block, an ‘IM’ block,

and a ‘Load’ block.

The ‘IM’ block is a voltage-input induction motor model described in Section 3.4 and

programmed in Section 6.8.1. The ‘Park(for)’ and ‘park(rev)’ blocks are Park’s transformation

expressed in Equations (3.2) and (3.3). The programming of Park’s transformation is described

in Section 3.8. The ‘Flux calculate’ block is built in Step 1. The ‘SVM’ block simulates a space

vector PWM inverter which is given on the book companion website. The ‘Speed�’ block
employs a ‘Repeating Sequence’ block in Simulink library. Pertinent details of these blocks,

including their functions and programming references, are summarized in Table 8.3.

Torqueids*

iqs*

Vds

Vqs

ids

iqs

Vs is

|Flux|

Wo

|Flux|

Flux
calculate

PI

PIPI

PI

Park
(rev)

Park
(for)

Speed*

SVM

Load

IM

Flux*

Figure 8.23 Simulink model of field-oriented control system.

Table 8.3 Function and parameters of the blocks in field-oriented control system.

Block Name Function Programming References

IM Voltage-input model of induction

motor

Section 3.4 and Section 6.8.1

Park(for) Park’s transformation Equation (3.2), Section 3.8

Park(rev) Park’s inverse transformation Equation (3.3), Section 3.8

Flux calculate Estimation of stator flux Step 1, Equations (8.7) and (8.8)

SVM space vector PWM inverter Book companion website

Speed� Rotor speed command ‘Repeating Sequence’ block in Simulink

library

Flux� Stator flux command ‘Step’ block in Simulink library

Load Load of rotor ‘Step’ block in Simulink library

PI Control rotor speed, stator flux, stator

currents

‘PID’ block in Simulink library
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Step 3 Running the Simulink Model of Field-Oriented Controller with Parameter Set

The parameters of the motor are listed in Section 8.4.3.

The flux command employs a ‘Step’ block with following stator flux commands.��lsm��* ¼ 0:86Wb 0 s < t � 2 s

The following parameters are input into the ‘Step’ block.

Step time¼ 0

Initial value¼ 0

Final value¼ 0.86

The speed command employed the ‘Repeating Sequence’ block with following speed

commands.

oo* ¼ 0 rad=s 0 s < t � 0:1 s Building flux stage

oo* ¼ 0 � 50 rad=s 0:1 s < t � 0:65 s Speed ramp rise stage

oo* ¼ 50 rad=s 0:65 s < t � 1 s Steady-state stage

oo* ¼ 50 � 20 rad=s 1 s < t � 1:5 s Speed ramp fall stage

oo* ¼ 20 rad=s 1:5 s < t � 2 s Steady-state stage

The following parameters are entered into the ‘Repeating Sequence’ block.

Time values ¼ ½0 0:1 0:65 0:65 1 1:5 2�
Output values ¼ ½0 0 50 50 50 20 20�

The 20Nm load employs a ‘Step’ block with following parameters.

Step time¼ 0.1

Initial value¼ 0

Final value¼ 20

The parameters of the four PI controllers are listed in Table 8.4.

The parameters of the flux PI controller and the current ids PI controller are first tuned to

guarantee that the magnitude of flux of the motor reaches the flux command value when the

speed command equals zero. In this example, the speed command equals zero before 0.1 s

duringwhich the flux is building up. From 0.1 s onwards, the flux is controlled. The variation of

the stator flux from0 s to 0.4 s is shown in Figure 8.24. The parameters of the speed PI controller

and the current iqs PI controller are next tuned to guarantee a good torque response.

The Simulink model of field-oriented control system shown in Figure 8.23 is run with the

following parameters.

Switching frequency of SVPWM¼ 20 kHz

Magnitude of the SVPWM output¼ 300V
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Load¼ 20Nm

Simulation type: Variable-step

Max-step size¼ 0.000001 s

Simulation time¼ 2 s

The simulation results are shown in Figures 8.25 and 8.26.

8.8.2 Programming Example 2: Sensorless Control of Induction Motor

By connecting the estimator of rotor speed described in Section 8.7.3 to the field-oriented

control system in programming example 1, sensorless control of the induction motor may be

simulated.

Step 1 Building the Model of a Sensorless Control System

A Simulink model of sensorless control of induction motor is built by a ‘Speed Estimation’

block and the field-oriented control system described in the programming example 1 as shown

in Figure 8.27.

Table 8.4 Parameters of the four PI controllers.

Name Input Output Proportional Integral

Flux PI

controller

Error of magnitude of flux

command and estimated flux

current ids
reference

400 1000

Speed PI

controller

Error of speed command and rotor

speed

current iqs
reference

800 100

Current ids PI

controller

Error of current ids reference and

measured current ids

Stator voltage

Vds

1 10

Current iqs PI

controller

Error of current iqs reference and

measured current iqs

Stator voltage

Vqs

80 100
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Figure 8.24 Stator flux build-up during 0� 0.1 s and controlled during 0.1� 0.4 s.
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Step 2 Building Sub-models Da, Db, Qa and Qb in the ‘Speed Estimation’ Block

Simulink models of Da, Db, Qa, and Qb in the ‘Speed Estimation’ block are built based on

Equation (8.57), using the values of A1 to A7 obtained from Equation (8.26) and the value of A8

obtained from Equation (8.54). The models are shown in Figures 8.28–8.31.

Step 3 Building the Speed Estimation Model

With themodels ofDa,Db,Qa, andQb developed inStep 2, the speed estimationmodel is built

as shown in Figure 8.32.
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Figure 8.25 Torque of field-oriented control system.
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Figure 8.26 Rotor speed of field-oriented control system.
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Figure 8.27 Simulink model of sensorless control of induction motor.
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The speed estimation model consists of five filter blocks which employ ‘Analog Filter

Design’ block in Simulink library, blocks ofDa,Db,Qa, andQb built in Step 2, a ‘Fcn’ block

in Simulink library to implement Equation (8.60) with parameters, (sqrt(u(1)^2þ u(2)^2))/

sqrt(u(3)^2þ u(4)^2), a ‘Switch’ block in Simulink library, a ‘Clock’ block in Simulink

library, and a ‘Constant’ block in Simulink library. The last three blocks are used to avoid

output estimated speed when time is less than 0.1 s. while the speed command equals zero

before 0.1 s which is flux setup time. Value of the ‘Constant’ block is 0 and threshold value of

the ‘Switch’ block is 0.1.

Five analog low-pass Butterworth filters are employed to filter noises of input stator current

(ids,iqs), stator voltage, (Vds,Vqs), and estimated speed (oo).With a desired frequency passband

of 500Hz (3142 rad/s), the five filters have the following parameters.

Design method: Butterworth

Filter type: Lowpass

Filter order¼ 1

Passband edge frequency (rad/s)¼ 3142 rad/s

The above parameters are input into the five ‘Analog Filter Design’ blocks in Figure 8.33.

Step 4 Building the Induction Motor Drive Model with Sensorless Control

With the Simulink model of field-oriented control system built in the example 1 and the

Simulink model of speed estimation built in Step 3, a Simulink model of sensorless control of

induction motor is built as shown in Figure 8.32.

With the two ‘ToWorkspace’ blocks in Figure 8.33, realistic rotor speed and estimated rotor

speed may be stored into MATLAB� workspace with two arrays named ‘Speed’ and

‘Est_Speed,’ respectively.
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Figure 8.33 Simulink model of sensorless control of induction motor.
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Step 5 Running the Simulation Model

The Simulink model of sensorless control of induction motor shown in Figure 8.33 is run with

same parameters as in Step 3 of example 1, but the simulation time is changed to 1 s. Since

speed estimation is implemented, the loop gains of the FOC drive are different from those in

example 1, as listed in Table 8.5. Using these adjusted parameters for the PI controllers, the

FOC sensorless drive is able to give satisfactory performance.

The simulation results are shown in Figures 8.34 and 8.35. The two arrays ‘Speed’ and

‘Est_Speed’ are stored in MATLAB� workspace, after the simulation.

Table 8.5 Parameters of the four PI controllers.

Name Input Output Proportional Integral

Flux PI

controller

Error of magnitude of

flux command and

estimated flux

current ids reference 600 1000

Speed PI

controller

Error of speed

command and rotor

speed

current iqs reference 200 400

Current ids PI

controller

Error of current ids
reference and

measured current ids

Stator voltage Vds 1 100

Current iqs PI

controller

Error of current iqs
reference and

measured current iqs

Stator voltage Vqs 50 1000
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Figure 8.34 Torque of the sensorless control system.
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With the two arrays ‘Speed’ and ‘Est_Speed’ in MATLAB� workspace, the following

MATLAB� program is used to calculate the mean square error between the actual rotor speed

and the estimated speed.

s=size(Speed); %Acquire sample number

e=0;

for i=1:s(1)

e=e+(Speed(i)-Est_Speed(i))^2;

end

error=e/s(1) %Yield mean square error

The result shows that the mean square error of actual rotor speed and estimated speed is 0.0019

with 1 224 441 samples during 1 s.

8.9 Summary

The chapter describes an integral model for the induction motor which can be implemented

conveniently using artificial neural networks. In the integral model, all the variables are

directly measurable from the actual machine. The coefficients of the integral equations may

be obtained by proper training of the linear neural networks and a realistic simulation model

of the induction motor may be constructed. With the estimated coefficients of the integral

equations, load, stator flux, and rotor speed of an induction motor may be estimated.

Sensorless control of induction motor is given as a programming example. The simplicity of

the neural network structure implies that implementation of online parameter identification is

possible based on a general digital signal processor (DSP) technique, in which case the

algorithm of network training should be written into the processor for online training.

Simulation studies on a typical induction motor have confirmed the validity of the ANN-

based integral model.
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Figure 8.35 (a) Rotor speed of the sensorless control system; (b) Estimated speed used to control the

induction motor.
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9

GA-Optimized Extended Kalman
Filter for Speed Estimation1

9.1 Introduction

Elimination of the speed sensor and measurement cables results in a lower cost and increased

reliability of an induction motor drive system. Hence, in recent years, speed estimation

methods have aroused great interest among induction motor control researchers. Kalman filter

is a special kind of observer which provides optimal filtering of the noises in measurement

and inside the system if the covariances of these noises are known. When rotor speed (as an

extended state) is added into the dynamic model of an induction motor, the extended Kalman

filter (EKF) can be used to re-linearize the nonlinear state model for each new estimate as it

becomes available. Recently, some advances have been obtained for the extendedKalman filter

of induction motor drives (Henneberger, Brunsbach and Klepsch, 1996; Kim, Sul and Park,

1996; Salvatore, Stasi and Tarchioni, 1993; Texas Instruments Incorporated, 1997) and the

extended Kalman filter has been considered to be the best solution for the speed estimation of

inductionmotor (Manes, Parasiliti and Tursini, 1994). However, these extended Kalman filters

do not yield the best drive performance, due to the fact that the correct noise matrices cannot

be obtained from traditional theories. The noise matrices are usually tuned experimentally

using a trial-and-error method (Manes, Parasiliti and Tursini, 1994; Bolognani, Oboe and

Zigliotto, 1999). In this chapter, a real-coded GA method (Goldberg, 1989; Wright, 1991) is

used to optimize the noisematrices for improving the EKF performance. Simulation studies are

carried out on a closed-loop V/Hz controller, a sensorless direct self controller (DSC), and a

field-oriented controller (FOC) and the effects of stator current noise and machine parameter

changes are investigated.

1 (a) Portions reprinted by permission of K.L. Shi, T.F. Chan, Y.K. Wong and S.L. Ho, “Speed estimation of induction

motor using extendedKalmanfilter,” IEEE2000WinterMeeting, vol. 1, pp. 243–248, January 23–27, 2000, Singapore.

� 2000 IEEE.

(b) Portions reprinted by permission of K.L. Shi, T.F. Chan, Y.K.Wong and S.L. Ho, “Speed estimation of an induction

motor drive using an optimized extended Kalman filter,” IEEE Transactions on Industrial Electronics, 49(1), 2002:

124–133. � 2002 IEEE.
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9.2 Extended State Model of Induction Motor

A dynamic electrical model for a three-phase induction motor has four state variables, namely

the stator currents (ids, iqs) and the rotor fluxes (ldr, lqr). An extended induction motor model

results if the rotor speed is included as an extended state variable. The extended model can be

expressed as follows (Lewis, 1992):

_x ¼ AxþBuþGðtÞwðtÞ ðSystemÞ ð9:1Þ

y ¼ Cxþ vðtÞ ðMeasurementÞ ð9:2Þ

where

xn ¼

i
ðnÞ
ds

i
ðnÞ
qs

lðnÞdr

lðnÞqr

oðnÞ
o

2
66666666664

3
77777777775
; yn ¼

i
ðnÞ
ds

i
ðnÞ
qs

2
4

3
5; un ¼

V
ðnÞ
ds

V
ðnÞ
qs

2
4

3
5;

An ¼

1�Kr

Kl

M 0
LMRr

L2rKl

M
PLMo

ðnÞ
o

2LrKl

M 0

0 1�Kr

Kl

M
PLMo

ðnÞ
o

2LrKl

M
LMRr

L2rKl

M 0

LM

tr
M 0 1� 1

tr
M �P

2
oðnÞ

o M 0

0
LM

tr
M

P

2
oðnÞ

o M 1� 1

tr
M 0

0 0 0 0 1

2
666666666666666664

3
777777777777777775

;

where tr ¼ Lr=Rr, Kr ¼ Rs þ L2MRr=L
2
r and Kl ¼ ð1�L2M=Lr=LsÞ*Ls.

Bn ¼

M

Kl

0

0
M

Kl

0 0

0 0

0 0

2
6666666666664

3
7777777777775
;Cn ¼

1 0 0 0 0

0 1 0 0 0

" #
;
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In Equations (9.1) and (9.2),G(t) is the noise-weight matrix,w(t) is noise matrix of state model

(system noise), and v(t) is noise matrix of output model (measurement noise). The covariance

matrices Q and R of these noises are defined as:

Q ¼ covðwÞ ¼ Efwwtg ð9:3Þ

R ¼ covðvÞ ¼ Efvvtg ð9:4Þ

where E{�} denotes the expected value.

9.3 Extended Kalman Filter Algorithm for Rotor Speed Estimation

The recursive form of Kalman filter may be expressed by the following system of equations,

where all symbols in the formulations denote matrices or vectors (Goldberg, 1989):

9.3.1 Prediction of State

xnþ 1 n ¼ Fðnþ 1; n; xnn�1; unÞ ð9:5Þ

where

Fðnþ 1; n; xnn�1; unÞ ¼ AnðxnnÞxnn þBnðxnnÞun: ð9:6Þ

9.3.2 Estimation of Error Covariance Matrix

Pnþ 1 n ¼ @F
@x

����
x¼xnn

Pnn

@FT

@x

����
x¼xnn

þGnQGT
n ð9:7Þ

where

G ¼
ðnþ 1

n

Fðtnþ 1; tÞGðtÞdt: ð9:8Þ

and initial value of Pnn is a constant matrix.

9.3.3 Computation of Kalman Filter Gain

Kn ¼ Pnn�1

@HT

@x

����
x¼xnn�1

@H

@x

����
x¼xnn�1

Pnn�1

@HT

@x

����
x¼xnn�1

þR

 !�1

ð9:9Þ
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where

Hðxnn�1; nÞ ¼ Cnðxnn�1Þxnn�1: ð9:10Þ

9.3.4 State Estimation

xnn ¼ xnn�1 þKnðyn�Hðxnn�1; kÞÞ ð9:11Þ

9.3.5 Update of the Error Covariance Matrix

Pnn ¼ Pnn�1�Kn

@H

@x

����
x¼xnn�1

Pnn�1 ð9:12Þ

Using Equations (9.1), (9.2), (9.6), and (9.10), the matrices F, H, @F/@x and @H/@x are

obtained as follows:

F ¼

1�Kr

Kl

M

� �
i
ðnÞ
ds þ LMRr

L2rKl

MlðnÞdr þ PLMo
ðnÞ
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� �
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tr
M

� �
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ð9:13Þ

H ¼ Cnxn ¼
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ð9:15Þ
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@H

@x
¼

1 0 0 0 0

0 1 0 0 0

" #
ð9:16Þ

The speed estimation algorithm of the extended Kalman filter can be simulated by using

MATLAB�/Simulink, as shown inFigure 9.1. TheEKFalgorithm is coded in anM-file (written

in theMATLAB� language) which is then placed in the S-function block. TheM-file is listed in

Appendix F.

9.4 Optimized Extended Kalman Filter

To justify the need for an optimized extended Kalman filter, the EKF speed estimation

algorithm is applied to a closed-loop constant V/Hz controller (Shi et al., 2002) as shown in

Figure 9.2.
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Figure 9.2 Extended Kalman filter speed estimation for a voltage-frequency controlled drive system.

Simulink model of Extended Kalman filter speed estimator. (Reproduced by permission of K.L. Shi,

T.F. Chan, Y.K. Wong and S.L. Ho, “Speed estimation of an induction motor drive using an optimized

extended Kalman filter,” IEEE Transactions on Industrial Electronics, 49(1), 2002: 124–133. � 2002

IEEE.)
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Figure 9.1 Simulink model of Extended Kalman filter speed estimator. (Reproduced by permission of

K.L. Shi, T.F. Chan, Y.K. Wong and S.L. Ho, “Speed estimation of an induction motor drive using an

optimized extended Kalman filter,” IEEE Transactions on Industrial Electronics, 49(1), 2002: 124–133.

� 2002 IEEE.)
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Details of the Kalman filter block are shown in Figure 9.1 and the induction motor block is

the voltage-input model built in Chapter 3, while the block of closed-loop V/Hz controller is

shown in Figure 9.3.

Parameters of the induction motor chosen for the simulation studies are listed in ‘Motor 1’

of Appendix B. It is assumed that the induction motor is taken through the following

control cycle:

oo* ¼ 0 � 120 ðrad=sÞ 0 s < t � 1:5 s

oo* ¼ 120 ðrad=sÞ 1:5 s < t � 3 s

oo* ¼ 120 � 20 ðrad=sÞ 3 s < t � 4:25 s

oo* ¼ 20 ðrad=sÞ 4:25 s < t � 6 s

oo* ¼ 20 � 120 ðrad=sÞ 6 s < t � 7:25 s

oo* ¼ 120 ðrad=sÞ 7:25 s < t � 9 s

In the simulation, initial values of the error covariancematrixP of EKF is set as a unit matrix

while the noise covariance matrices R, Q, and noise-weight matrix G of EKF are assumed as

follows:

P ¼

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

2
666666664

3
777777775

R ¼
10�3 0

0 10�3

" #

Q ¼

x 0 0 0 0

0 x 0 0 0

0 0 x 0 0

0 0 0 x 0

0 0 0 0 d

2
666666664

3
777777775

G ¼

l 0 0 0 0

0 l 0 0 0

0 0 l 0 0

0 0 0 l 0

0 0 0 0 m

2
666666664

3
777777775

Traditionally, the values of x, d, l and m are determined using a trial-and-error process which

is time consuming and may not yield the best filter performance. Figure 9.4 shows the

performance of the EKF speed estimation algorithm when applied to the closed-loop constant

V/Hz controller, with x, d, l and m set at different values. The example demonstrates that the

EKF speed estimation algorithm is sensitive to the noise covariance matrix Q and the noise-

weight matrix G.

The ‘goodness’ of speed estimation of theEKFwith various compositions ofQ andGmay be

evaluated by the mean squared error between the actual rotor speed and the estimated speed.
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Using this criterion, it is found that very good performance of the EKF is obtained with the

matrices Q¼Diag[10�6, 10�6, 10�6, 10�6, 10�2] and G¼Diag[10�6, 10�6, 10�6, 10�6,

10�2], as illustrated in Table 9.1. Fine tuning of the elements ofG, however, is tedious and it is

difficult to check whether the optimum values have been obtained.

9.5 Optimizing the Noise Matrices of EKF Using GA

In order to find the best matrices G, Q, and R for the EKF, a real-coded GA is employed. The

real-coded GA has many advantages (Wright, 1991) in numerical function optimization over

Table 9.1 Performance of EKF for a constant V/Hz induction motor drive in terms of the mean squared

error between the actual rotor speed and the estimated speed.

Matrices G and Q E ¼ 1

n

Xn
i¼1

ðsi�eiÞ2 Estimation Results

l¼ m¼ x¼ d¼ 1e-2 417.1220 Poor

l¼ m¼ x¼ d¼ 1e-3 772.4852 Poor

l¼ m¼ x¼ d¼ 1e-6 2.5927eþ 003 Poor

l¼ x¼ d¼ 1e-3, m¼ 1e-2 1.5331 Good

l¼ x¼ 1e-3, m¼ d¼ 1e-2 1.0164 Good

l¼ x¼ 1e-6, m¼ d¼ 1e-2 0.9985 Very good

s: actual rotor speed; e: estimated speed; n: number of data samples (¼ 45 000); E: mean squared error of estimated

speed.

(Reproduced by permission of K.L. Shi, T.F. Chan, Y.K. Wong and S.L. Ho, “Speed estimation of an induction motor

drive using an optimized extendedKalman filter,” IEEE Transactions on Industrial Electronics, 49(1), 2002: 124–133.

� 2002 IEEE.)
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Figure 9.4 Estimated speed of constant V/Hz inductionmotor drivewith the variousmatrices. Simulink

model of ExtendedKalman filter speed estimator. (Reproduced by permission ofK.L. Shi, T.F. Chan,Y.K.

Wong and S.L. Ho, “Speed estimation of an induction motor drive using an optimized extended Kalman

filter,” IEEE Transactions on Industrial Electronics, 49(1), 2002: 124–133. � 2002 IEEE.)
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binary encoding. Efficiency of the real-coded GA is increased as there is no need to convert

chromosomes to phenotypes before each fitness evaluation; less memory is required; there is

no loss in precision by the conversion between binary and real values. The procedures of the

real-coded are outlined as follows:

a. Population Representation of the Natural Parameter. The five diagonal elements (Gd)

of the matrix G, five diagonal elements (Qd) of covariance matrix Q, and two diagonal

elements (Rd) of covariancematrixR are coded into a long real-coded string, chromosome. A

coding example of the real-coded GA is given as follows:

Gd ¼ ½0:0637; 0:0769; 0:0054; 0:0115; 0:0846�
Qd ¼ ½0:0172; 0:0037; 0:0313; 0:0817; 0:0235�
Rd ¼ ½0:0587; 0:0924�

chromosome ¼ ½Gd ; Qd ;Rd �
¼ ½0:0637; 0:0769; 0:0054; 0:0115; 0:0846; 0:0172;

0:0037; 0:0313; 0:0817; 0:0235; 0:0587; 0:0924�

b. Initial Generation. It begins by randomly generating an initial population of the long real-

coded strings.

c. Fitness Evaluation. In the current generation, each of the strings is decoded back to the

corresponding diagonal elements of the three matrices,Gd, Qd, and Rd. Then, these diagonal

elements from each string are separately sent to the EKF speed estimator of the induction

motor drive to yield the objective function (which is the mean squared error of the estimated

speed). Finally, these strings are ranked according to the value of the objective function by a

linear ranking method.

d. Reproduction. Reproduction is a process in which parent structures are selected to form

new offspring. In the present study, the stochastic universal sampling method is employed.

e. Recombination (Crossover). The single-point recombination method is used to exchange

the information between two chromosomes.

f. Mutation. Breeder Genetic Algorithm (Muhlenbein and Schlierkamp-Voosen, 1993) is

used to implement the mutation operator for the real-coded GA, which uses a nonlinear

term for the distribution of the range of mutation applied to gene values. This mutation

algorithm is able to generate most points in the hypercube defined by the variables of the

individual and range of the mutation. By biasing mutation towards smaller changes in gene

values, the mutation can be used in conjunction with recombination as a foreground

search process.

g. Iteration. The real-coded GA runs iteratively repeating the processes (c) to (g) until a

population convergence condition is met or the given maximum number of iterations is

reached.
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The real-coded GA for EKF (GA-EKF) can be implemented on a PC by MATLAB�

language. For optimizing thematricesG,Q, and R of EKF for the constant V/Hz controller, the

parameters of the GA are set as follows.

1. Initial population size: 100

2. Maximum number of generations: 20

3. Probability of crossover: 0.8

4. Mutation probability: 0.01

5. Initial range of real-coded strings: [0.0001; 0.1]

6. Performance measure: the mean squared error between the actual rotor speed and the

estimated speed.

Table 9.2 shows a gradient convergence process of the real-coded GA. At the twentieth

generation, the mean squared error of the rotor speed and the estimated speed has decreased

to 0.1543 with the optimized matrices G¼Diag([0.0020 0.0050 0.0010 0.0246 0.1000]),

Q¼Diag([0.0024 0.0875 0.0527 0.0001 0.0978]), andR¼Diag([0.0524 0.0094]). Comparing

with the results of the trial-and-error method (Table 9.1), the real-coded GAmethod has found

better matrices G, Q, and R.

Figure 9.5 shows the simulation results for the closed-loop constant V/Hz controller with

the optimized matrices G, Q, and R.

. Effect of current noise and machine parameter changes

Figures 9.6 and 9.7 show the rotor speed responses of the constant V/Hz controller and the

estimated speed of theGA-EKFwhen the rotor resistance of the inductionmotor,Rr, is changed

Table 9.2 Iteration process of the GA.

Generations E ¼ 1

n

Xn
i¼1

ðsi�eiÞ2 Generations E ¼ 1

n

Xn
i¼1

ðsi�eiÞ2

0 8.3137

1 5.2311 11 0.5713

2 3.8212 12 0.5247

3 2.9570 13 0.3943

4 2.3951 14 0.3306

5 1.5648 15 0.2425

6 0.9142 16 0.1794

7 0.8853 17 0.1731

8 0.7271 18 0.1618

9 0.6370 19 0.1662

10 0.6286 20 0.1543

s: actual rotor speed; e: estimated speed;n: number of data samples (¼ 45000);E:mean squared error of estimated speed.

(Reproduced by permission of K.L. Shi, T.F. Chan, Y.K. Wong and S.L. Ho, “Speed estimation of an induction motor

drive using an optimized extendedKalman filter,” IEEE Transactions on Industrial Electronics, 49(1), 2002: 124–133.

� 2002 IEEE.)
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separately to 2Rr and 0.8Rr and a random noise (variance 5 A) is present in the current sensor

of the controller.

The extended Kalman filter is less sensitive to the machine parameter variations because

these variations are handled as noise. Figures 9.5 and 9.6 and Table 9.3 also show that the EKF

has disturbance rejection for the current sensor noise.

9.6 Speed Estimation for a Sensorless Direct Self Controller

To further investigate the performance of the optimizedEKF, simulation studies on a sensorless

direct self controller (DSC) (Shi, Chan andWong, 1998) for an inductionmotor drive is carried

out. Figure 9.8 shows the MATLAB�/Simulink program developed.

-20

0

20

40

60

80

100

120

140

9876543210

Time (sec)

Rotor speed
(rad/sec)

Estimated speed
(rad/sec)

Rotor resistance 2Rr

Noise variance 5A

Figure 9.6 Rotor speeds and the estimated speeds of the constant V/Hz controller with the machine

parameter variations and the current sensor noise.
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Figure 9.5 Torque, rotor speed, and estimated speed of the closed-loop constant V/Hz controller by

GA-EKF.
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The induction motor, the EKF parameters, and the matrices G, Q, and R used for the

simulation studies are the same as those used in the closed-loop constant V/Hz controller

simulation. The speed, stator flux and torque commands are set as:

oo* ¼ 60 rad=s 0s < t � 0:8 s

oo* ¼ 20 rad=s 0:8s < t � 1:6 s

oo* ¼ 60 rad=s 1:6s < t � 2:5 s

jlsj* ¼ 0:86Wb 0s < t � 4 s

T* ¼ 200 N m oo < oo*

T* ¼ 200 N m oo � oo*

T* ¼ 20 Nm oo > oo*

Table 9.3 Mean squared error of rotor speed and estimated speedwith themachine parameter variations

and the current noise for the closed loop V/Hz controller.

Stator Resistance

Rs¼ 0.288O
Rotor Resistance

Rr¼ 0.161O
Variance of

Current Noise
E ¼ 1

n

Xn
i¼1

ðsi�eiÞ2

Rs Rr 0 A 0.1543

0.8Rs 0.8Rr 0 A 8.9731

2Rs 2Rr 0 A 25.0374

0.8Rs 0.8Rr 5 A 10.2616

2Rs 2Rr 5 A 29.7503
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Figure 9.7 Rotor speeds and the estimated speeds of the constant V/Hz controller with the machine

parameter variations and the current sensor noise.
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Figure 9.9 shows the simulation results of the sensorless DSC induction motor drive using

EKF with the GA-optimized matrices G, Q, and R while the mean squared error of the rotor

speed and the estimated speed is 0.1528.

9.7 Speed Estimation for a Field-Oriented Controller

To further explore the feasibility of the extendedKalman filter for speed estimation, simulation

studies are also carried out on a field-oriented controlled (FOC) induction motor drive with

direct stator flux orientation (Xu and Novotny, 1991).
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Figure 9.9 Torque, rotor speed, and estimated speed of the sensorless direct self controller.
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Figure 9.10 shows the block diagram of the FOC system. From the stator voltages (Vds, Vqs)

and stator currents (ids, iqs), the stator flux can be obtained by a ‘Flux calculate’ block based

on Equation (2.6). Two PI blocks control the stator flux and rotor speed, while another two PI

blocks control the stator currents (iDS, iQs) in field coordinates. Coordinate transformation

of voltages from the field frame (VDs,VQs) to the stator frame (Vds, Vqs) is implemented by

an inverse Park calculation. At the same time, the 3-phase voltage signals and 3-phase current

signals are sent to a GA-EKF program for rotor speed estimation. A voltage-input model

of induction motor built in Chapter 3 is used to simulate a 0.147 kW induction motor (USA

Bodine Electric Company model 295).

The four PI controllers (one flux controller, one speed controller, and two current controllers)

in the control system are tuned individually by adjusting the proportional constant Kp and

the integral constant KI. The goal of this tuning is to choose parameters that would enable

the controller to drive the error signal to zero. The four signals related to each controller

(reference, actual, error and output) may be observed by ‘Scope’ blocks and examined during

the simulation studies.

The inner current loops are tuned first with constant values on their reference inputs (i.e. the

speed and flux controllers disabled). For the 0.147 kW induction motor, the parameters of the

current PI controllers can be obtained from Equations (6.26)–(6.40) in Chapter 6.
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Figure 9.10 Speed estimation of FOC induction motor drive using EKF. Simulink model of Extended

Kalman filter speed estimator. (Reproduced by permission ofK.L. Shi, T.F. Chan,Y.K.Wong and S.L.Ho,

“Speed estimation of an induction motor drive using an optimized extended Kalman filter,”

IEEE Transactions on Industrial Electronics, 49(1), 2002: 124–133. � 2002 IEEE.)
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After the parameters of the current PI controllers have been set, the speed and flux PI

controllers in Figure 9.10 are tuned by observing the responses of the ‘Scope’ blocks. It is found

that the parameters of the speed and flux PI controllers should be tuned as follows:

Parameters of the speed PI controller : Kp ¼ 100; KI ¼ 1

Parameters of the flux PI controller : Kp ¼ 2; KI ¼ 1

The parameters of the 0.147 kW induction motor for the simulation studies are listed in

‘Motor 3’ of Appendix B. The load torque is constant at 0.5Nm.

It is assumed that the induction motor is taken through the following control cycle:

Figure 9.11 shows the phase-A stator voltage and current of the field-oriented control system

in Figure 9.10. The torque and rotor speed responses are shown in Figure 9.12.

The EKF program in Figure 9.10 is listed in Appendix F with the following 0.147 kWmotor

parameters used:

Lr K ¼ 0:3481; Ls K ¼ 0:3185; Lh K ¼ 0:2963; Rs K ¼ 14:6; Rr K ¼ 12:77;

H pole ¼ 4=2 ðpole number P ¼ 4Þ:

Figure 9.13 shows rotor speed estimated by the EKF, when the matrices G, Q, and R of the

EKF are initially set as:
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Figure 9.11 Phase-A voltage and current of the field-oriented control system.

Period Speed Command Flux Command

0 s� t< 0.1 s oo
� ¼ 0 rad/s ls� ¼ 0.6Wb

t¼ 0.1 s� 0.25 s oo
� ¼ 0�180 rad/s ls� ¼ 0.6Wb

t¼ 0.25 s� 1 s oo
� ¼ 180 rad/s ls� ¼ 0.6Wb

t¼ 1 s� 1.1 s oo
� ¼ 180�20 rad/s ls� ¼ 0.6Wb

t¼ 1.1 s� 2 s oo
� ¼ 20 rad/s ls� ¼ 0.6Wb
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G ¼ Diagð½0:01; 0:01; 0:01; 0:01; 0:5�Þ;
Q ¼ Diagð½0:01; 0:01; 0:01; 0:01; 0:5�Þ;
R ¼ Diagð½0:01; 0:01�Þ;

With these selected matrices, the EKF fails to give a good speed estimation and divergence

occurs eventually.

Figure 9.14 shows the rotor speed estimated by the EKF when the matrices G, Q, and R of

the EKF are tuned, using a trial-and-error method, as follows:

G ¼ Diagð½0:01; 0:01; 0:01; 0:01; 1:5�Þ;
Q ¼ Diagð½0:01; 0:01; 0:01; 0:01; 1:5�Þ;
R ¼ Diagð½0:01; 0:01�Þ;
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Figure 9.12 Torque and rotor speed responses of the field-oriented control system.
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Figure 9.13 Rotor speed and estimated speed of induction motor drive with EKF.
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In this case the estimation error (i.e. mean squared error between the estimated speed and

the actual rotor speed) is 106.5209. The trial-and-error method has improved the speed

estimation accuracy but fails to yield the best EKF performance.

In order to obtain the optimum matrices G, Q, and R for the EKF, the real-coded GA

employed in Sections 9.5 and 9.6 is used. The parameters of theGA for optimizing thematrices

G,Q, and R of EKF from the experimental data are the same as those in Section 9.5 except that

the initial range of real-coded strings is set as [0.01; 5]. A different initial range is necessary

in order to guarantee convergence and short iteration time. Table 9.4 shows the convergence

process. Figure 9.15 shows the actual speed and the speed estimated using GA-EKF with the

optimized matrices. The GA optimization method has improved the EKF performance by

decreasing the mean squared error of estimated speed from 106.5209 (Figure 9.14) to 0.1105

(Figure 9.15). The optimizedmatrices are:G¼Diag[0.0525, 0.0602, 0.0319, 0.01302, 1.809],

Q¼Diag([0.108, 0.081, 0.0716, 0.1308, 2.307]), and R¼Diag([0.0101, 0.0104]).
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Figure 9.14 Rotor speed and estimated speed of induction motor drive with EKF.

Table 9.4 Iteration process of the GA.

Generations E ¼ 1

n

Xn
i¼1

ðsi�eiÞ2 Generations E ¼ 1

n

Xn
i¼1

ðsi�eiÞ2

0 42.3431

1 23.6518 11 0.4632

2 12.7427 12 0.4728

3 7.1624 13 0.3572

4 3.4261 14 0.3147

5 1.6421 15 0.2143

6 0.8934 16 0.2315

7 0.9518 17 0.1623

8 0.6615 18 0.1372

9 0.5933 19 0.1252

10 0.4821 20 0.1105

s: actual rotor speed; e: estimated speed; n: number of data samples (¼ 40 000); E: mean squared error of estimated

speed.
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9.8 MATLAB�/Simulink Programming Examples

Four programming examples are given to illustrate the development of a voltage-frequency

controlled (VFC) drive, a GA-optimized EKF for speed estimation, an EKF-based sensorless

VFC of induction motor, and an EKF-based sensorless field-oriented control (FOC) of

induction motor.

9.8.1 Programming Example 1: Voltage-Frequency Controlled
(VFC) Drive

A voltage-frequency controlled drive is based on constant volts/Hz operation to maintain

constant torque in the induction motor. A typical constant volts/Hz characteristic (The

MathWorks, Inc., 2008) is shown in Figure 9.16. The straight line has a small voltage boost

in order to compensate for resistance drop at low frequencies.
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Figure 9.16 Volts/Hz characteristic.
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Figure 9.15 Rotor speed and estimated speed using GA-EKF with optimized matrices.
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Step 1 Building a Lookup Table of Constant Volts/Hz Characteristic

The volts/Hz characteristic of a 7.5 kW induction motor is assumed as follows:

Base frequency Fb¼ 60Hz (2p	 60Hz¼ 377 rad/s)

Base voltage Vb¼ 300V

Slope rate¼Vb/Fb¼ 300/377¼ 0.7958

Boost voltage Vboost¼ 4V

The following MATLAB� program is first written to generate the lookup table of constant

volts/Hz characteristic:

% Program ’Give_VF_table.m’

Base_F=60*pi*2;

Slop=300/377;

F_input=[-1*Base_F*2:4:Base_F*2];

B3=[8*Slop:Slop*4: 300];

B2=fliplr(B3);

[sF1 sF2]=size(F_input);

[sB1 sB2]=size(B3);

M= (sF2-1)/2-sB2-1;

B1=ones(1,M)*300;

V_output=[B1,B2,5,4,5,B3,B1];

plot(F_input, V_output);

axis([-800 800 -20 350]);

The result of running the above program is shown in Figure 9.17.

The two arrays ‘F_input’ and ‘V_output’ are stored in MATLAB� workspace after the

program ‘Give_VF_table.m’ has been run. The array ‘F_input’ contains the values of

frequency and the ‘V_output’ contains the corresponding magnitudes of output voltage.
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Figure 9.17 Lookup table of constant volts/Hz characteristic for the 7.5-kW motor.
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Constant volts/Hz operation can then be simulated by using a ‘Lookup’ block in Simulink

library, as detailed in the next step.

Step 2 Building a Simulink Model of the Constant Volts/Hz Controller

The Simulink model of the constant volts/Hz controller is built as shown in Figure 9.18.

The Simulink model consists of a ‘PID’ block, a ‘slip_limit’ block, a ‘Gain’ block, a

‘Lookup’ block, an ‘Integrator’ block, and a ‘Polar to Cartesian’ block. The inputs are the

speed command and the rotor speed, while the output is the stator voltage vector (Vds, Vqs).

The parameters of the ‘slip_limit’ block are set as follows:

Upper limit: 37.7

Lower limit: �37.7

The parameters of the ‘PID’ block are set as follows:

Proportional: 3

Integral: 0.02

Derivative: 0

Since the inductionmotor has 3 pole-pairs, the parameter of the ‘Gain’ block is set as follows:

Gain: 3

The ‘Lookup’ block has two parameters set as follows:

Vector of input values: F_input

Table data: V_output

Input of the ‘Lookup’ block is the array ‘F_input’ and the output is the array ‘V_output’.

With the two arrays inworkspace (created inStep 1), the ‘Lookup’ table can be used to simulate

the constant volts/Hz characteristic.

The ‘Integrator’ block is used to calculate the angle of the stator voltage vector. Using the

magnitude from the ‘Lookup’ block and the angle from the ‘Integrator’ block, the ‘Polar to

Cartesian’ block outputs the stator voltage vector (Vds, Vqs).
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Figure 9.18 Simulink model of constant volts/Hz controller.
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Step 3 Building a Simulink Model of the Voltage-Frequency Controlled Drive

The Simulink model of voltage-frequency controlled drive is built as shown in Figure 9.19.

In Figure 9.19, the ‘VF Controller’ block is the Simulink model of constant volts/Hz

controller built in Step 2. The ‘Induction Motor’ block is a 7.5 kW voltage-input model

of induction motor described in Section 3.4 with parameters of ‘Motor 1’ listed in

Appendix B.

The ‘Repeating Sequence’ block outputs the speed commands with following parameters:

Time values¼ [0 1 2 4 6 8 10 12 14 16 17 20]

Output values¼ [0 0 100 100 �100 �100 100 100 �100 �100 0 0]

The ‘Load’ block outputs a constant load torque of 20Nm and the parameter of the block is

set as follows:

Constant¼ 20

Step 4 Simulating the Voltage-Frequency Controlled Drive
Before performing the simulation of the voltage-frequency controlled drive in Figure 9.19, the

MATLAB� program ‘Give_VF_table.m’ in Step 1 should first be run to create the two arrays

‘F_input’ and ‘V_output’ for use by the ‘Lookup’ block in the constant volts/Hz controller. The

Simulink model is run with following parameters.

Simulation type: Variable-step

Max-step size¼ 0.001 s

Simulation time¼ 18 s

The simulation results are shown in Figure 9.20.

idq

VF Controler

Speeds

Repeating
Sequence

20

Load Induction 
Motor

Figure 9.19 Simulink model of voltage-frequency controlled (VFC) drive.
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9.8.2 Programming Example 2: GA-Optimized EKF
for Speed Estimation

This example describes how the matrices [Gd, Qd, Rd] described in Section 9.5 of an extended

Kalman filter (EKF) can be optimized for speed estimation of an induction motor. The

MATLAB� program consists of a GA program ‘Start_GA.m’, a fitness evaluation program

‘Call_kal.m’, and a Simulink model ‘kal_train.mdl’ of an induction motor drive with EKF

speed estimation. Their relationship is shown in Figure 9.21.

The functions of programs in the GA-optimized EKF are listed in Table 9.5.

Start_GA.m 

(1) Set GA parameters 

(2) ga (@ Call_kal.m,..) 

(3) Output best 

chromosome [Gd, Qd, Rd]

Call_kal.m 

(1) sim( kal_train.mdl )

(2) Calculate mean 
squared error (mse) of 
estimated speed by “yout”

Output: mse

kal_train.mdl 

(1) Simulation of 
induction motor 
drive and EKF speed 
estimation 

(2) Output: “yout”
(error of estimated 
speed) 

Call 

Call 

Return 
“yout”

Return 
mse

Figure 9.21 Relationship between programs in GA-optimized EKF.
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Figure 9.20 (a) Speed command and (b) Rotor speed.
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Table 9.5 Functions of programs in GA-optimized EKF.

Name of

Program

Function Input Output

Start_GA.m Set GA parameters and perform

‘ga’ function in MATLAB�

which calls the fitness evaluation

function ‘Call_kal.m’

N/A best chromosome

matrix [Gd, Qd, Rd]

Call_kal.m Fitness evaluation which calls the

Simulink model ‘kal_train.mdl’

and calculates the mean squared

error (mse).

Chromosome

[Gd, Qd, Rd]

‘mse’ mean squared

error of estimated

speed as value of

evaluation fitness

Kal_train.mdl Simulink models of induction

motor drive and EKF speed

estimation

Chromosome

[Gd, Qd, Rd]

‘yout’ error of

estimated speed

Notes: The chromosome matrix [Gd, Qd, Rd] is described in Section 9.5.

Step 1 Programming GA Program ‘Start_GA.m’

The following MATLAB� program ‘Start_GA.m’ is first written:

function x1=Start_GA()

clc

clear all

warning off all

%Give_VF_table_GA;

X0=rand(1,12);

lb=ones(1,12)*0.00001;

lb=lb’;

ub=ones(1,12)*100;

ub=ub’;

options = gaoptimset(@ga);

options = gaoptimset(options,’MutationFcn’,@mutationadaptfeasible);

options = gaoptimset(options,’PopulationSize’,100);

options = gaoptimset(options,’Generations’,20);

options = gaoptimset(options, ’EliteCount’,2);

options = gaoptimset(options, ’CrossoverFraction’,0.8);

options = gaoptimset(options,’PlotFcns’,{@gaplotbestf },’Display’,

’iter’);

[xx,fval,exitflag]=ga(@Call_kal,12,[],[],[],[],lb, ub,[], options)

assignin(’base’,’fval’,fval);

x1=xx;

assignin(’base’,’x1’,x1);

[A,B]=size(x1);

Error=sum(x1.^2)/A;

assignin(’base’,’Error’,Error);

G=diag(x1(1:5));

Q=diag(x1(6:10));

R=diag(x1(11:12));

assignin(’base’,’G’,G);

assignin(’base’,’Q’,Q);

assignin(’base’,’R’,R);

end
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The programming information is described in Step 3 of Section 4.5.2.

Step 2 Programming Fitness Evaluation ‘Call_kal.m’

The following program ‘Call_kal.m’ is next written:

function mse=Call_kal(xx)

x1=xx;

G=diag(x1(1:5));

Q=diag(x1(6:10));

R=diag(x1(11:12));

assignin(’base’,’G’,G);

assignin(’base’,’Q’,Q);

assignin(’base’,’R’,R);

[tout,xout,yout]=sim(’kal_train’,1.5);

[A,B]=size(yout);

y=yout;

y(1)=[];

mse=sum(y.^2)/A;

end

Step 3 Programming Simulink Model ‘kal_train.mdl’ of Induction Motor Drive

and EKF Speed Estimation

Direct-on-line starting of a 7.5 kWinductionmotor is employed for the fitness evaluation ofGA

optimization. The Simulink model ‘kal_train.mdl’ of induction motor drive and EKF speed

estimation is shown in Figure 9.22.

The Simulink model ‘kal_train.mdl’ is called by the program ‘Call_kal.m’ in Step 2 and

returns error of EKF speed estimation to ‘Call_kal.m’ for calculating the fitness evaluation

(mean squared error of estimated speed). The Simulinkmodel consists of an ‘InductionMotor’

Estimated
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Speed
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Power
Supply
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269.4 V 60Hz

Figure 9.22 Simulink model for fitness evaluation of GA optimization.
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block, an ‘EKF’ block, and a ‘Power Supply’ block. The ‘Induction Motor’ block may be

a 7.5 kW voltage-input model (described in Section 3.4 and programmed in Section 6.8.1) or

a 7.5 kW discrete-state model (described in 3.5) of induction motor. The ‘EKF’ block is

described in Figure 9.1 and its MATLAB� program is listed in Appendix F. The ‘Power

Supply’ block is a dq-axis voltage source with output Vds, Vqs, which is programmed in

Section 6.8.1 and shown in Figure 6.39.

The parameters of the Simulink model are set as follows.

Simulation type: Variable-step

Max-step size¼ 0.0002 s

Simulation time¼ 1.5 s

Step 4 Running the GA Programs to Optimize EKF Speed Estimation

Upon entering command ‘Start_GA’ in the MATLAB� window, the GA optimizing process

starts. The optimizing process may be time-consuming, depending on the computer speed and

the following parameters in the programs.

1. the simulation time in ‘sim’ function of the program ‘Call_kal.m’;

2. ‘PopulationSize’; and

3. ‘Generations’ in the program ‘Start_GA.m’.

After the program ‘Start_GA.m’ has stopped, the optimummatrices [Gd,Qd, Rd] of EKF speed

estimation are stored in MATLAB� workspace. With the optimum matrices [Gd, Qd, Rd], the

Simulink model ‘kal_train.mdl’ built in Step 3 is run, and the simulation results are shown in

Figure 9.23.
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Figure 9.23 Rotor speed response of direct-on-line starting: (a) rotor speed ofmotor (b) estimated speed

by the optimized EKF.
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9.8.3 Programming Example 3: GA-based EKF Sensorless
Voltage-Frequency Controlled Drive

The Simulink model of a GA-based EKF sensorless voltage-frequency controlled drive is

shown in Figure 9.24.

The model consists of the Simulink model of voltage-frequency controlled drive built in

Section 9.8.1 and an embedded optimized EKF speed estimation built in Section 9.8.2.

The parameters of the ‘Repeating Sequence’ block and the ‘load’ block in Figure 9.24 are

described in Step 3 in Section 9.8.1, and the speed response of the GA-based sensorless

voltage-frequency controlled drive is shown in Figure 9.25.
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Figure 9.25 Speed response of the GA-based EKF sensorless voltage-frequency controlled drive.
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Figure 9.24 Sensorless voltage-frequency controlled drive with GA-based EKF.
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9.8.4 Programming Example 4: GA-based EKF Sensorless FOC
Induction Motor Drive

The Simulink model of a GA-based EKF sensorless FOC induction motor drive is shown in

Figure 9.26.

The sensorless FOC drive employs a 0.147 kW induction motor (‘Motor 3’ of Appendix B).

Replacing the 7.5 kW induction motor by the 0.147 kW induction motor and repeating the GA

optimizing program in Section 9.8.2, we obtain the optimized matrices [Gd, Qd, Rd] in EKF

speed estimation for the 0.147 kW induction motor drive.

The Simulink model of FOC induction motor drive built in Section 9.7 and shown in

Figure 9.10 is employed for constructing the sensorless FOC induction motor drive, the speed

estimated by the optimized EKF being fed back to the speed PI controller, as shown in

Figure 9.26.

The parameters of the four PI controllers are set as follows.

The speed commands are created by a ‘Repeating Sequence’ block with following

parameters.

Time values¼ [0 0.1 0.25 0.25 1 1.1 2]

Output values¼ [0 0 180 180 180 20 20]
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calculate

load
PI

PIPI

PI

Park
(rev)
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Speed*

Speed

Kalman
estimator

IM

Flux*

Figure 9.26 Simulink model of a sensorless FOC induction motor drive with GA-based EKF.

Parameters of the current ids PI controllers Kp¼ 20 KI¼ 1

Parameters of the current iqs PI controllers Kp¼ 20 KI¼ 1

Parameters of the flux PI controller: Kp¼ 100 KI¼ 1

Parameters of the flux PI controller: Kp¼ 1 KI¼ 100
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The ‘Load’ block outputs a constant load of 0.5Nm and the parameter of the block is set as

follows:

Constant¼ 0.5

The simulated rotor speed response of the sensorless FOC induction motor drive with

GA-based EKF is shown in Figure 9.27.

9.9 Summary

This chapter has presented a novel method to achieve good performance of an EKF for speed

estimation of an induction motor drive. Based on a real-coded GA, the optimization procedure

enables the noise covariance and weight matrices, on which the EKF performance critically

depends, to be properly selected. Simulation studies on different induction motor drives have

confirmed the efficacy of the approach.

Real-coded GA is found to be a powerful technique for optimizing the EKF algorithm as

applied to the three different controllers and two different induction motors. Computer

simulation results have demonstrated that the GA-EKF has good noise rejection and its

performance is less sensitive to the machine parameter variations.

Possible future developments of the extended Kalman filter are (1) to find a relationship

between the motor parameters and the initial range of the matrices G, Q, and R of EKF for the

GA optimization, and (2) to implement the GA-EKF on a DSP board.
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10

Optimized Random PWM
Strategies Based on Genetic
Algorithms

10.1 Introduction

Many new pulse width modulation (PWM) techniques have been developed in order to

give inverters a wider linear modulation range, lower switching loss, wider spread of energy

over the harmonic spectrum, and reduced total harmonic distortion (THD) (Zhou and

Wang, 2002). These new techniques may be categorized as (1) selected harmonic elimination

method, (2) random PWM (RPWM) method, and (3) genetic algorithm (GA) optimization

techniques. The selected harmonic elimination method suppresses the chosen harmonics

by controlling the switching angles (Chiasson et al., 2004). On the other hand, the random

PWM inverter achieves very small magnitude of switching harmonics compared with a

standard PWM inverter by spreading the harmonic energy over a wide frequency range. Two

major advantages of the RPWM over the standard PWM are (Bech et al., 1999): (1) the

whistling acoustic noise emitted by standard PWM is converted into less annoying broad-band

noise, (2) the size of filter components required for the inverter to comply with standards

for conducted electromagnetic interference (EMI) is reduced. However random PWM tech-

niques cannot significantly improve the total harmonic distortions (THD). To overcome

this problem, genetic algorithm (GA) optimization techniques have recently been proposed

(Shi and Li, 2003; Ozpineci, Tolbert and Chiasson, 2004) to reduce the THD of PWM

waveforms.

In this chapter, a random carrier-frequency PWM, a random pulse-position PWM, a random

pulse-width PWM, and a hybrid random pulse-position and random pulse-width PWMwill be

optimized by genetic algorithm. Compared with standard PWM and random PWM inverters,

the GA-optimized random PWM inverters have the same switching loss, but they have a wider

linear modulation range, lower value of THD (and hence less copper loss), and smaller

harmonic amplitudes (which require a smaller filter size). The harmonic energy of the
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GA-optimized random PWM is spread over a wide range, and the energy the fundamental

component is also enhanced. In practical applications, these advantages are obtained without

any extra hardware cost and programming complexity. The optimized random PWM strategy

may be implemented by adding only arrays including the optimized carrier series or pulse

series with some instructions included in the DSP program. A single-phase inverter is

employed for this optimization study. The validity of the proposed methods has been verified

by simulation and experimental studies on aDSP-based voltage-controlled inverter. As steady-

state performance is being considered, the GA-optimized random PWM inverter proposed

may be used as an uninterruptable power supply (UPS) or used to drive a single-phase induction

motor for low performance applications, such as pumps, fans and mixers.

10.2 PWM Performance Evaluation

In a single-phase two-arm bridge PWM inverter, a triangular-carrier wave is employed for

comparison with sinusoidal modulationwaves to generate signals to control the semiconductor

switching devices as shown in Figure 10.1.

For convenience, assume that the amplitude of the triangular-carrier wave Vc shown in

Figure 10.2 is 1V. Then, Vc may be expressed mathematically as

Vc ¼ 4

Tc
t�4n þ 3 ðVÞ when ðn�1ÞTc < t < nTc� Tc

2

Vc ¼ � 4

Tc
t þ 4n�1 ðVÞ when nTc� Tc

2
< t < nTc

ð10:1Þ

where n¼ 1, 2, . . ., N, and Tc is the carrier period.

Ua

IGBT IGBT 

IGBT IGBT 

Gate drive 

PWM generator 

Sinusoidal modulation waves 

Triangular 
carrier

DC
Ub

Va  Vb

Figure 10.1 A single-phase two-arm bridge PWM inverter.
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The sinusoidal modulation waves in the single-phase PWM inverter are known as reference

signals or modulating signals, which may be expressed as

Va ¼ V sin ðotÞ

Vb ¼ �V sin ðotÞ
ð10:2Þ

where o is the frequency and V is the amplitude of the sinusoidal waveform.

For a carrier frequency of 1 kHz, a reference sinusoidal frequency of 50Hz, and amodulation

index of 0.8, the carrier wave and the modulating waves are as shown in Figure 10.3. The

points of intersection between the carrier and modulating waves generate the control signals

for the PWM inverter.

When the value of the reference sinusoidal wave is larger than value of the triangular-carrier

wave, the PWM output is in the high state; otherwise it is in the low state. In this chapter, the

single-phase triangular-carrier PWM is referred to as the standard PWM.

For a DC source of 1V, the outputs of the PWM inverter are Ua, Ub, and, Uab, as shown in

Figure 10.4.

Tc Tc

(n+2)Tc(n+1)Tc

0 V

1 V

-1 V

tV c
(V

)

nTc nTcnTc /2-(n-1)Tc

Figure 10.2 Triangular carrier wave.
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Figure 10.3 Two sinusoidal waves and triangular carrier wave.
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10.2.1 Fourier Analysis of PWM Waveform

The PWM-inverter output waveform Uab may be expressed by a trigonometric form of

Fourier series (Lathi, 2005):

Uab ðtÞ ¼ A0 þ
XN
i¼1

½Ai cos ðio0tÞ þ Bi sin ðio0tÞ� ðVÞ ð10:3Þ

where A0 ¼ 1
T0

Ð
T0
UabðtÞdt, Ai ¼ 2

T0

Ð
T0
UabðtÞ cos no0tdt, Bi ¼ 2

T0

Ð
T0
UabðtÞsin no0tdt, o0 is

the fundamental frequency, and T0 ¼ 2p
o0
.

The compact trigonometric form of the Fourier series is

UabðtÞ ¼ C0 þ
XN
i¼1

Ci cosðio0t þ yiÞ ðVÞ ð10:4Þ

where C0 ¼ A0, Ci ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
i þ B2

i

p
, and yi ¼ tan�1 �Bi

Ai

� �
.

The PWM output waveform may be evaluated by Fourier coefficients as follows.

a. Amplitude of the fundamental wave of PWM-inverter output:

UF ¼ C1 ðVÞ ð10:5Þ

Amplitude of the maximum harmonic:

Umax H ¼ maxðCi¼2;...NÞ ðVÞ ð10:6Þ

Total harmonic distortion (THD):

THD ¼ 1

C1

ffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼2

C2
i

vuut ð10:7Þ

1V

0V

1V

0V

1V

0V

-1V 

Ua

Ub

Uab

Figure 10.4 Output waveforms of PWM inverter (The pulse frequency of Uab is about two times of

Ua and Ub).
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Power of PWM signal in time domain is defined as

P PWM ¼

ðT0
0

UðtÞ2dt

T0
ð10:8Þ

where U(t) is the PWM-inverter output waveform in the time domain, T0 is the period, and

P_PWM is power of the PWM signal.

b. Power of a discrete PWM signal is defined as (Lathi, 2005)

P PWM ¼

XN�1

i¼0

U2
i

N

where Ui is the ith sample of PWM output waveform in the time domain, and N is the

total sample number.

According to Parseval’s theorem (Lathi, 2005), the sum of the power of all discrete FFT

components equals the power of the continuous signal in the time domain, that is,

P PWM ¼ C2
0 þ 1

2

XN�1

i¼1

C2
i : ð10:9Þ

The power of the fundamental component of PWM output waveform is defined as

P F ¼ 1

2
C2
1: ð10:10Þ

The power of all the harmonic components of PWM output waveform is defined as

P H ¼ 1

2

XN�1

i¼2

C2
i : ð10:11Þ

10.2.2 Harmonic Evaluation of Typical Waveforms

Example 10.1 Square Wave

A square wave and its Fourier series are shown in Figure 10.5.

The period of the squarewaveT0 is 0.02 s and the fundamental frequencyo0¼ 2p/T0¼ 100p
rad. The square wave may be evaluated as follows.

The fundamental components are calculated from Equation (10.3):

A1 ¼ 2

T0

ð0:01
0

1� coso0tdt þ
ð0:02

0:01

ð�1Þ � coso0tdt

2
4

3
5 ¼ 0 V

B1 ¼ 2

T0

ð0:01
0

1� sino0tdt þ
ð0:02

0:01

ð�1Þ � sino0tdt

2
4

3
5 ¼ 4

p
V:
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The amplitude of fundamental component is then obtained from Equation (10.5):

U F ¼ C1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
1 þ B2

1

q
¼ 4

p
V

The power of signal of the square wave is obtained from Equation (10.8):

P PWM ¼

ðT0
0

UðtÞ2dt

T0
¼ 1

0:02

ð0:01
0

12 � dt

0
@

1
A þ 1

0:02

ð0:02
0:01

ð�1Þ2 � dt

0
@

1
A ¼ 1:

Thepower of the fundamental component of PWMoutput is obtained fromEquation (10.10):

P F ¼ 1

2
C2
1 ¼

1

2
� 4

p

� �2

¼ 0:811:

The power of all the harmonic components of PWM output is obtained from

P H ¼ P PWM�P F ¼ 1�0:811 ¼ 0:189:

Because the square wave is an odd function, the harmonic components have the following

properties:

1. Ai¼ 0, for all i

2. Ci¼ 0, when i is even, which implies that there are no even harmonic components in the

square wave.

3. Ci ¼ 2
i�p, when i is odd.

The 3rd and 5th harmonics are large in the square wave. Elimination of the harmonics of low

frequencywill require a large filter. PWM techniques are therefore employed in order to reduce

the amplitudes of the low-frequency harmonics.
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Figure 10.5 A square wave and its Fourier series.
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Example 10.2 Four-Pulse PWM Wave

A four-pulse waveform, Uab, is produced by the triangular-carrier PWM inverter as shown in

Figure 10.1 with following parameters.

Frequency of carrier wave¼ 100Hz

Amplitude of carrier wave¼ 1V

Frequency of reference sinusoidal wave¼ 50Hz

Amplitude of reference sinusoidal wave¼ 0.8V (Modulation index¼ 0.8)

DC source¼ 1V.

Using a computer simulation program, we obtain the four-pulse PWM wave and its Fourier

series as shown in Figure 10.6.

The pulsewidth of the four-pulse PWMwave is 0.00291s and the pulse positions are as follows:

t 1 ¼ 0:00156 s; t 2 ¼ 0:00447 s; t 3 ¼ 0:00553 s; t 4 ¼ 0:00844 s;

t 5 ¼ 0:01156 s; t 6 ¼ 0:01447 s; t 7 ¼ 0:01553 s; t 8 ¼ 0:01844 s:

The four-pulse PWMwave is an odd function and its fundamental component is calculated as

follows.

The fundamental components are calculated from Equation (10.3):

A1 ¼ 0;

B1 ¼ 2

T0

ðt2
t1

1� sino0tdt þ
ðt4
t3

1� sino0tdt þ
ðt6
t5

ð�1Þ � sino0tdt

2
4

þ
ðt8
t7

ð�1Þ � sino0tdt

#
¼ 0:912 V

where T0¼ 0.02 s and o0¼ 100p rad.
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Figure 10.6 A four-pulse PWM waveform and its Fourier series.
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Amplitude of fundamental component is obtained from Equation (10.5):

U F ¼ C1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
1 þ B2

1

q
¼ 0:912 V

Power of signal of the wave is obtained from Equation (10.8):

P PWM ¼

ðT0
0

UðtÞ2dt

T0
¼ 0:582:

Power of the fundamental component of the wave is obtained from Equation (10.10):

P F ¼ 1

2
C2
1 ¼

1

2
� 0:912ð Þ2 ¼ 0:416:

Power of all the harmonic components of the wave is

P H ¼ P PWM�P F ¼ 0:582�0:416 ¼ 0:166:

Because the four-pulse PWM wave is an odd function, the harmonic components have the

following properties:

1. Ai¼ 0, for all i

2. Ci¼ 0when i is an even number, which implies that there are no even harmonic components

in the four-pulse PWM wave.

Comparing with the square wave in Example 10.1, the amplitude of the 3rd harmonic has been

reduced in the four-pulse PWM wave.

Example 10.3 Four-Pulse Wave with Moved Positions

When the pulses in Figure 10.6 aremoved to certain positions, the energy of the harmonicsmay

be spread over a wide frequency range. The harmonic amplitudes are reduced, and the

fundamental amplitude is increased as shown in Figure 10.7.
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Figure 10.7 A four-pulse waveform and its Fourier series.
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The pulse width of the four-pulse wave is also 0.00291s and the pulse positions are as follows:

t 1 ¼ 0:00199 s; t 2 ¼ 0:0049 s; t 3 ¼ 0:005 s; t 4 ¼ 0:00791 s;

t 5 ¼ 0:0119 s; t 6 ¼ 0:01481 s; t 7 ¼ 0:0152 s; t 8 ¼ 0:01811 s:

The four-pulse wave is neither even nor odd and its fundamental component is calculated as

follows.

Fundamental components are calculated from Equation (10.3):

A1 ¼ 2

T0

ðt2
t1

1� coso0tdt þ
ðt4
t3

1� coso0tdt þ
ðt6
t5

ð�1Þ � coso0tdt

2
4

þ
ðt8
t7

ð�1Þ � coso0tdt

#
¼ 0:0073 V

B1 ¼ 2

T0

ðt2
t1

1� sino0tdt þ
ðt4
t3

1� sino0tdt þ
ðt6
t5

ð�1Þ � sino0tdt

2
4

þ
ðt8
t7

ð�1Þ � sino0tdt

#
¼ 0:9879 V

where T0¼ 0.02 s and o0¼ 100p rad.

The amplitude of the fundamental component is obtained from Equation (10.5):

U F ¼ C1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
1 þ B2

1

q
¼ 0:988 V:

The power of the wave is obtained from Equation (10.8):

P PWM ¼

ðT0
0

UðtÞ2dt

T0
¼ 0:582:

The four-pulse wave with moved pulse positions has the same power of signal as the PWM

wave in Example 10.2 because of equal pulse widths.

The power of the fundamental component of the wave is obtained from Equation (10.10):

P F ¼ 1

2
C2
1 ¼

1

2
� ð0:988Þ2 ¼ 0:488:
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The power of the all harmonic components of the wave is

P H ¼ P PWM�P F ¼ 0:582�0:488 ¼ 0:094:

The 5th harmonic is prominent in the four-pulse wave. To reduce the lower frequency

harmonics, PWM with a higher carrier frequency should be employed.

Example 10.4 Standard PWM Output with a 5-kHz Triangular Carrier Wave

The standard PWM inverter (Figure 10.1) is simulated with the following parameters:

Frequency of carrier wave¼ 5 kHz

Amplitude of carrier wave¼1V

Frequency of reference sinusoidal wave¼ 50Hz

Amplitude of reference sinusoidal wave¼ 0.8V (Modulation index¼ 0.8)

DC source¼ 1V.

The spectrum of the output waveUab of the standard PWM inverter is shown in Figure 10.8 and

several prominent harmonics are present. As shown in Figure 10.4, the pulse frequency ofUab

is about two times of the triangular-carrier frequency, hence the prominent harmonic has a

frequency of 10 kHz.

The evaluation results for various PWM waveforms are summarized in Table 10.1.

Comparing the results for Examples 10.2 and 10.3 in Table 10.1, wemay conclude that when

pulse positions are changed,

1. the THD is reduced;

2. the energy of the harmonics is spread;

3. power and amplitude of the harmonic components are reduced;

4. power and amplitude of fundamental component are enhanced;

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
ag

ni
tu

de
 (

V
) 

104 Hz 

Figure 10.8 Spectrum of the standard PWM output Uab.
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5. the power of signal (summation of the power of fundamental component and the power of all

harmonic components) is unchanged.

10.3 Random PWM Methods

To improve the performance of the PWM inverter by using traditional mathematical methods,

very complex calculation is involved. Hence, random PWM methods optimized by genetic

algorithm (GA) are proposed.

Various random pulse-width modulation techniques for dc-ac inverters have been reported

and summarized in (Trzynadlowski et al., 1994). The three basic random PWM strategies are:

1. random carrier-frequencymodulation (Habetler and Divan, 1991; Boys andHandley, 1992;

Pedersen and Blaabjerg, 1992), in which the carrier frequencies are randomly varied;

2. random pulse-position modulation (Kirlin, Kwok and Trzynadlowski, 1993; Kirlin

et al., 1994), in which the switching pulses are randomly placed in individual switching

intervals;

3. random switching or randompulse-widthmodulation (Legowski and Trzynadlowski, 1989;

Legowski and Trzynadlowski, 1990; Tse et al., 2000), in which the pulsewidth is randomly

varied relative to the output-pulse width of the standard PWM.

10.3.1 Random Carrier-Frequency PWM

Random carrier-frequency modulation may be regarded as a special frequency shift keying

(FSK) technique (Habetler and Divan, 1991). The instantaneous carrier half period can be

Table 10.1 Evaluation results of various PWM waveforms.

Performance of PWM Example 10.1 Example 10.2 Example 10.3 Example 10.4

THD Equation (10.7) 0.483 0.631 0.438 0.774

Power of signal

Equations (10.8)

and (10.9)

1 0.582 0.582 0.508

Power of fundamental

component

Equation (10.10)

0.811 0.416 0.488 0.318

Power of all harmonic

components

Equation (10.11)

0.189 0.166 0.094 0.190

Amplitude of fundamental

component

Equation (10.5)

1.273V 0.912V 0.988V 0.797V

Amplitude of max

harmonic component

Equation (10.6)

0.424V 0.385V 0.301V 0.318V

at 10 kHz

Optimized Random PWM Strategies Based on Genetic Algorithms 283



www.manaraa.com

described in terms of the half switching period Tn, as follows:

fi ¼ 1

Tn

Tn ¼ nðtiÞ
ð10:12Þ

where n¼ 1, 2,. . ., N, and Tn is the time period determined by the random function n(ti).

A triangular carrier waveform with random frequency is shown in Figure 10.9.

In computer simulation, pseudo Gaussian ‘white’ noise is used as the random function n(ti),

while in DSP-based PWM inverter implementation, the random function is generated by a

pseudo-random function generator. When the DC supply is 1V, the mean random-carrier

frequency is 5 kHz and its amplitude is 1V, frequency of sinusoidal wave is 50Hz and

amplitude is 0.8 V (modulation index equals 0.8), and FFT is based on 4096 samples, the

spectrum of output Uab of the random carrier-frequency PWM inverter is as shown in

Figure 10.10.
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-1V
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Ti Ti+1 Ti+2 Ti+3

0V

Figure 10.9 Triangular carrier waveform with random frequency.
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Figure 10.10 Spectrum of output Uab of random carrier-frequency PWM inverter.
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10.3.2 Random Pulse-Position PWM

In random pulse-position PWM, harmonic components of the output waveform are suppressed

by moving the PWM positions randomly in a pulse interval, while keeping all pulse widths

unchanged.

The random pulse position PWM may be expressed as follows.

PcenterðnÞ ¼ PPWM centerðnÞ � RðnÞ ð10:13Þ

where n¼ 1, 2,. . ., N; P_center and PPWM_center are center positions of nth pulse of the random

PWM and the standard PWM, and R(n) the is nth random number.

An example of random pulse-position PWM waveform is shown in Figure 10.11 together

with a standard PWM for comparison.

A random pulse-position PWM is simulated and evaluated by the following steps.

Step 1 Obtain a standard PWM pulse series by using a 5 kHz triangular-carrier wave of

amplitude 1V and a 50Hz modulating sinusoidal waveform of amplitude as 0.8V, giving a

modulation index of 0.8.

Step 2 Move the pulse positions of the standard PWM output randomly in each half cycle.

Step 3 Calculate the FFT of random pulse-position PWM output based on 4096 samples.

WhenDC supply is 1V, the spectrum of outputUab of the random pulse-position PWMinverter

is shown in Figure 10.12.

10.3.3 Random Pulse-Width PWM

Random pulse-width PWM may be expressed as follows:

WrandðnÞ ¼ WPWMðnÞ � RðnÞ ð10:14Þ

where n¼ 1, 2,. . ., N; WPWM and Wrand are widths of the nth pulse of standard PWM and

random pulse-width PWM, and R(n) is the nth random number.

Standard 
PWM 

10 9 8 7 6 5 4 3 2 1 

Random 
pulse-position 
PWM 

9 10 8 7 6 5 4 3 2 1 

Figure 10.11 Comparison between random pulse-position PWM and standard PWM.
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An example of random pulse-width PWM is shown in Figure 10.13 together with a standard

PWM for comparison.

When DC supply is 1V, carrier frequency is 5 kHz and amplitude is 1V, frequency of sine

wave is 50Hz and amplitude is 0.8 V (modulation index equals 0.8), and FFT is based on 4096

samples, the spectrum the random pulse-width PWM inverter output Uab is shown in

Figure 10.14.

10.3.4 Hybrid Random Pulse-Position and Pulse-Width PWM

Both the pulse position and pulse width are randomly changed in a hybrid random pulse-

position and pulse-width PWM.

When DC supply is 1V, carrier frequency is 5 kHz and amplitude is 1V, frequency of sine

wave is 50Hz and amplitude is 0.8 V (modulation index equals 0.8), and FFT is based on 4096
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Figure 10.12 Typical spectrum of random pulse-position PWM inverter output.
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Figure 10.13 Comparison between random pulse-width PWM and standard PWM.
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samples, the spectrum of output Uab of the hybrid random pulse-position and random pulse-

width PWM inverter is shown in Figure 10.15.

10.3.5 Harmonic Evaluation Results

The standard and random PWM output waveforms are generated using the following

conditions:

DC supply¼ 1V

Frequency of carrier wave¼ 5 kHz
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Figure 10.14 Typical spectrum of random pulse-width PWM inverter output.
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Figure 10.15 Typical spectrumof hybrid randompulse-position and randompulse-width PWMinverter

output.
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Amplitude of carrier wave¼ 1V

Frequency of sinusoidal wave¼ 50Hz

Amplitude of sinusoidal wave¼ 0.8V (Modulation index¼ 0.8)

Sample number of FFT¼ 4096.

The output waveforms are then evaluated by Equations (10.5)–(10.11) and the results are

summarized in Table 10.2.

Comparing the results in Tables 10.1 and 10.2, we observe that the harmonic ampli-

tudes of various random PWM methods are greatly reduced. However, other evaluated values

of the various random PWM methods are not improved compared with the standard PWM

inverter. Hence, genetic algorithm is proposed to improve the PWM output waveform.

10.4 Optimized Random PWM Based on Genetic Algorithm

Genetic algorithms have been applied to optimize electrical drive systems recently (Zhang

et al., 2001; Shi et al., 2002; Shi and Li, 2003). In Chapter 9, the application of real-coded

genetic algorithm (GA) to an extended Kalman filter based sensorless induction motor drive is

described. In this chapter, the same technique will be employed for optimizing various PWM

strategies. The THD of the PWM output waveform is selected as the fitness value of

chromosomes, hence the fittest individual in GA optimization will have the best PWM

waveform evaluation result. A flowchart for optimizing a random PWM inverter waveform

using GA is shown in Figure 10.16. The simulation results for different PWM strategies are

listed in Table 10.3.

Table 10.2 Evaluation results of standard and random PWM output waveforms.

Evaluation results and

equations

Standard

PWM

Random

carrier

frequency

PWM

Random

pulse-

position

PWM

Random

pulse-

width

PWM

Hybrid

random

pulse-

position

and pulse-

width

PWM

THD Equation (10.7) 0.7739 0.7721 0.7820 0.7840 0.7997

Signal power Equation (10.8) 0.5078 0.5093 0.5061 0.5078 0.5044

Power of fundamental

Equation (10.10)

0.3176 0.3191 0.3141 0.3142 0.3076

Power of all harmonics

Equation (10.11)

0.1902 0.1902 0.1920 0.1931 0.1967

Amplitude of fundamental

Equation (10.5)

0.7970V 0.7988V 0.7925V 0.7927V 0.7843V

Amplitude of max harmonic

Equation (10.6)

0.3182V 0.1219V 0.1096V 0.0956V 0.0757V

288 Applied Intelligent Control of Induction Motor Drives



www.manaraa.com

10.4.1 GA-Optimized Random Carrier-Frequency PWM

The GA program with following parameters is used to optimize a random carrier-frequency

PWM.

1. DC supply¼ 1V

2. Mean of the carrier frequencies: 5 kHz

Start 

Initialize GA parameters 
Set iteration number gen = 0 

Initialize population of first generation
with M random chromosomes 

Use the chromosomes to generate  
M  PWM output waveforms 

gen = gen + 1

Select the best N individuals based on the 
fitness values 

Recombination to exchange the information 
among the N chromosomes

Mutation to overcome local minimum 

gen > L

Stop and output the 
best fit individual 

No
Yes

Reinsertion to keep population size as M

Calculate fitness values (THD) of the 
chromosomes of the output waveforms 

Figure 10.16 Flowchart for optimizing random PWM inverter output waveform using GA. (Repro-

duced by permission of K.L. Shi and H. Li, “Optimized PWM strategy based on genetic algorithms,”

IEEE Transaction on Industrial Electronics, 52(5), 2005: 1458–1461. � 2005 IEEE.)
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3. Amplitude of carrier wave¼ 1V

4. Frequency of sinusoidal wave¼ 50Hz

5. Amplitude of sinusoidal wave¼ 0.8V (modulation index: 0.8)

6. Total pulse number in 0.02 s: equals total pulse number yielded by the standard PWM

7. Chromosome: time period series of triangular-carrier wave

8. Fitness value of chromosome: THD of PWM inverter output

9. Population size: 200

10. Maximum number of generations: 200

11. Sample number of FFT¼ 4096

By proper scaling, the total pulse number of the GA-optimized random PWM equals exactly

the total pulse number yielded by the standard PWMin a fundamental cycle (0.02 s). Hence, the

total switching loss in the GA-optimized random PWM is same as that in the standard PWM

inverter. Computer simulation shows that the fitness value THD has decreased to 0.7478 at the

200th generation, as shown in Figure 10.17.

The spectrum of output Uab of the optimized random-carrier-frequency PWM inverter is

shown in Figure 10.18. The real-coded GAmethod has spread the harmonic energy over awide

frequency range.

Comparing with the standard PWM, the THD of the GA-optimized random-carrier-

frequency PWM is reduced by about 3.4%, the power of fundamental component is increased

by 4%, the power of all harmonic components is reduced by 2.8%, the amplitude of the

maximum harmonic component is reduced by about 72.4%, and the amplitude of the

fundamental component is increased by about 2%.

10.4.2 GA-Optimized Random-Pulse-Position PWM

TheGA programwith following parameters is used to optimize a random pulse-position PWM

inverter.

1. DC supply¼ 1V

2. Mean of the carrier frequencies: 5 kHz

3. Amplitude of carrier wave¼ 1V

Table 10.3 Comparison of various PWM evaluation results.

Simulation results Calculation

equations

Standard

PWM

GA carrier

frequency

GA pulse-

position

GA pulse-

width

GA pulse-

position -

width

THD Equation (10.7) 0.7739 0.7478 0.6420 0.6489 0.6085

Power of signal Equation (10.8) 0.5078 0.5152 0.5078 0.5078 0.5098

Power of fundamental Equation (10.10) 0.3176 0.3304 0.3596 0.3573 0.3719

Power of all harmonics Equation (10.11) 0.1902 0.1848 0.1482 0.1505 0.1377

Amplitude of

fundamental

Equation (10.5) 0.7970V 0.8129V 0.8481V 0.8453V 0.8625V

Amplitude of max

harmonic

Equation (10.6) 0.3182V 0.0877V 0.1165V 0.1102V 0.1423V

290 Applied Intelligent Control of Induction Motor Drives



www.manaraa.com

4. Frequency of sinusoidal wave¼ 50Hz

5. Amplitude of sinusoidal wave¼ 0.8V (Modulation index: 0.8)

6. Total pulse number in 0.02 s: equals total pulse number yielded by the standard PWM

7. Chromosome: time series of pulse position
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Figure 10.17 Convergence process of optimizing a random carrier-frequency PWM inverter.
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Figure 10.18 Spectrum of GA-optimized random-carrier-frequency PWM inverter output.
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8. Fitness value of chromosome: THD of PWM inverter output

9. Population size: 100

10. Maximum number of generations: 50

11. Initial population: Pulse-position series produced by the standard PWM inverter

12. Sample number of FFT¼ 4096

As shown in Figure 10.19, the fitness value THDhas decreased to 0.6420 at the 50th generation.

The spectrum of outputUab of the optimized random-pulse-position PWM inverter is shown

in Figure 10.20.

10.4.3 GA-Optimized Random-Pulse-Width PWM

The GA program with following parameters may yield satisfactory results to optimize pulse-

width PWM.

1. DC supply¼ 1V

2. Mean of the carrier frequencies: 5 kHz

3. Amplitude of carrier wave¼ 1V

4. Frequency of sinusoidal wave¼ 50Hz
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Figure 10.19 Convergence process of optimizing a random pulse-position PWM inverter.
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5. Amplitude of sinusoidal wave¼ 0.8V (Modulation index¼ 0.8)

6. Total pulse number in 0.02 s: equals total pulse number yielded by the standard PWM

7. Chromosome: time series of pulse width

8. Fitness value of chromosome: THD of PWM inverter output

9. Population size: 200

10. Maximum number of generations: 50

11. Initial population: pulse-width series produced by standard PWM inverter

12. Sample number of FFT¼ 4096

As shown in Figure 10.21, the fitness value THD has decreased to 0.64895 at the 50th

generation.

The spectrum of outputUab of the optimized random-pulse-width PWM inverter is shown in

Figure 10.22.

10.4.4 GA-Optimized Hybrid Random Pulse-Position and
Pulse-Width PWM

TheGAprogramwith following parameters is used to optimize a hybrid randompulse-position

and pulse-width PWM.

1. DC supply¼ 1V

2. Mean of the carrier frequencies: 5 kHz

3. Amplitude of carrier wave¼ 1V

4. Frequency of sinusoidal wave¼ 50Hz

5. Amplitude of sinusoidal wave¼ 0.8V (Modulation index¼ 0.8)

6. Total pulse number in 0.02 s: equals total pulse number yielded by the standard PWM

7. Chromosome: time series of pulse position and pulse width

8. Fitness value of chromosome: THD of PWM inverter output

9. Population size: 200
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Figure 10.20 Spectrum of GA-optimized random-pulse-position PWM inverter output.
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10. Maximum number of generations: 50

11. Initial population: pulse-position and pulse-width series produced by standard PWM

inverter

12. Sample number of FFT¼ 4096
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Figure 10.21 Convergence process of optimizing a random pulse-width PWM inverter.
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Figure 10.22 Spectrum of GA-optimized random-pulse-width PWM inverter output.
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As shown in Figure 10.23, the fitness value THD has decreased to 0.60853 at the 50th

generation.

The spectrum of outputUab of the optimized hybrid random pulse-position and pulse-width

PWM inverter is shown in Figure 10.24.

10.4.5 Evaluation of Various GA-Optimized Random PWM Inverters

Computer evaluation results of various GA-optimized random PWM methods are listed in

Table 10.3 for comparison.

In order to compare various PWM methods, we define a parameter DEval as follows:

DEval ¼ ðEvaluation GA�Evaluation SÞ
Evaluation S

� 100%: ð10:15Þ

whereEvaluation_S is evaluationvalue of the standard PWMandEvaluation_GA is evaluation

value of the GA-optimized random PWM. The computed values of DEval for different GA-
optimized random inverters are summarized in Table 10.4.

0 10 20 30 40 50
0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

Generation

F
itn

es
s 

va
lu

e
Best: 0.60853

Figure 10.23 Convergence process of optimizing a hybrid random pulse-position and pulse-width

PWM inverter.
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10.4.6 Switching Loss of GA-Optimized Random Single-Phase
PWM Inverters

Switching energy losses of semiconductor devices are caused by charging and discharg-

ing output capacitance at turn-on and turn-off periods, which may be expressed as

(Kazimierczuk, 2008),

Esw ¼ Np � Co � V2
dc ð10:16Þ
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Figure 10.24 Spectrum ofGA-optimized hybrid random pulse-position and pulse-width PWM inverter

output.

Table 10.4 DEval (%) of GA-optimized random PWM inverters.

Simulation results GA random

carrier-frequency

PWM

GA random

pulse-position

PWM

GA random

pulse-width

PWM

GA Hybrid

pulse-position

and pulse-width

PWM

THD % �3.4 % �17.04 % �16.2 % �21.4 %

Power of signal of

PWM output

1.5 % 0.0 % 0.0 % 0.4 %

Power of fundamental

component

4.0 % 13.22 % 12.50 % 17.1 %

Power of all harmonic

components

�2.8 % �22.08 % �20.9 % �27.6 %

Amplitude of

fundamental

2.0 % 6.41 % 6.1 % 8.2 %

Amplitude of max

harmonic

�72.4 % �63.4 % �65.4 % �55.3 %
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whereCo is the output capacitance,Vdc is the DC voltage,Np is number of pulses, andEsw is the

switching energy loss.

Hence, the total switching loss in a fundamental cycle increases in proportion to the total

pulse number in the cycle. Since the same pulse number is used, the total switching losses in

various GA-optimized random PWM inverters are same as the total switching loss in the

standard PWM inverter.

10.4.7 Linear Modulation Range of GA-Optimized Random Single-Phase
PWM Inverters

In the linear modulation range, that is, modulation index is less than or equals 1, the average

value of pulse width of the standard PWM inverter varies directly with the amplitude of the

sinusoidal reference signal. Since the total number of pulses and average width of pulses are

unchanged, the GA-optimized random PWM inverters retain the features of linear modulation.

To demonstrate the linear modulation capability of the GA-optimized random PWM inverters,

the GA-optimized random-pulse-position series at a modulation index of 0.8 (obtained in

Section 10.3.2) is applied to the PWM inverter with various modulation indices and the

harmonic evaluation results are listed in Table 10.5.

Evaluation values of the standard PWM are listed in Table 10.6 for comparison.

Table 10.5 Evaluation values of the GA-optimized random-pulse-position PWM.

Modulation

index

THD Power of

signal

Power of

fundamental

Power of

all harmonics

Amplitude of

fundamental

Amplitude of

max harmonic

1 0.5036 0.6377 0.5085 0.1292 1.0083 0.1081

0.9 0.5699 0.5713 0.4311 0.1402 0.9285 0.0797

0.8 0.6420 0.5078 0.3596 0.1482 0.8481 0.1165

0.6 0.8479 0.3818 0.2221 0.1597 0.6665 0.2082

0.4 1.1828 0.2529 0.1054 0.1475 0.4592 0.2280

0.2 1.9573 0.1250 0.0259 0.0991 0.2275 0.1507

0.1 3.4643 0.0566 0.0044 0.0523 0.0933 0.0713

Table 10.6 Evaluation values of the standard PWM.

Modulation

index

THD Power of

signal

Power of

fundamental

Power of all

harmonics

Amplitude of

fundamental

Amplitude of

max harmonic

1 0.5235 0.6377 0.5005 0.1372 1.0005 0.2104

0.9 0.6509 0.5713 0.4013 0.1700 0.8958 0.2605

0.8 0.7739 0.5078 0.3176 0.1902 0.7970 0.3182

0.6 1.0664 0.3818 0.1787 0.2031 0.5978 0.3724

0.4 1.4791 0.2529 0.0793 0.1736 0.3984 0.3255

0.2 2.3360 0.1250 0.0194 0.1056 0.1968 0.1881

0.1 3.5540 0.0566 0.0042 0.0525 0.0912 0.0920
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Since the total pulse width remains unchanged, the power of the output signal of the

GA-optimized random PWM is same as the standard PWM. The values of DEval computed

by Equation (10.15) are listed in Table 10.7.

The GA-optimized random-pulse-position PWM inverter has very good linear modulation

capacitywith lowerTHDand good evaluationvalueswhen themodulation index is between 0.2

and 0.9. When the modulation index equals 0.1 and 1, the GA-optimized random-pulse-

position PWM is also superior to the standard PWM as observed from Table 10.7.

10.4.8 Implementation of GA-Optimized Random Single-Phase
PWM Inverter

10.4.8.1 GA-Optimized Random-Carrier-Frequency PWM Inverter

The GA-optimized random-carrier-frequency series will be repeatedly applied to control the

PWM inverter to replace the standard triangular carrier generator in order to minimize the total

harmonic distortion.

10.4.8.2 GA-Optimized Random Pulse-Position and Pulse-Width PWM Inverters

The other three GA-optimized random PWM inverters are (1) random-pulse-position PWM

inverter, (2) random-pulse-width PWM inverter, and (3) hybrid random pulse-position and

pulse-width PWM inverter. The states of Uab of the inverter must be translated into the

switching states of the semiconductor switches, and this process is repeated in every

fundamental cycle. For the inverter shown in Figure 10.25, the transformation relationship

is as listed in Table 10.8.

10.4.9 Limitations of Reference Sinusoidal Frequency of GA-Optimized
Random PWM Inverters

Because the optimization process is based on a fixed sinusoidal reference frequency, the

optimum performance of the GA-optimized random PWM inverter is obtained for that

Table 10.7 DEval (%) for GA-optimized random PWM at different modulation indices.

Modulation

index

THD Power of

signal

Power of

fundamental

Power of

all harmonics

Amplitude of

fundamental

Amplitude of

max harmonic

1 �3.80 0 1.56 �6.05 0.78 �48.62

0.9 �12.44 0 7.40 �17.65 3.65 �69.40

0.8 �17.04 0 13.22 �22.08 6.41 �63.39

0.6 �20.49 0 24.29 �21.37 11.49 �44.09

0.4 �20.03 0 32.91 �15.03 15.26 �29.95

0.2 �16.21 0 33.51 �6.16 15.60 �19.88

0.1 �2.52 0 4.76 �0.38 2.30 �22.50
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particular frequency. When the GA-optimized random PWM is used at a different reference

frequency, the carrier frequency should be modified as follows:

f new carrier ¼ f GA carrier � f new reference

f GA reference

ð10:17Þ

where f_new_carrier is the new carrier frequency, f_new_reference is the new reference frequency,

f_GA_carrier is the carrier frequency when PWM inverter is optimized, and f_GA_reference is the

reference sinusoidal frequency when PWM inverter is optimized.

An alternative solution is to construct a look-up tablewhich stores theGA-optimized random

switching series at various reference sinusoidal frequencies for the variable-frequency inverter.

It is also possible to model the data in the look-up table by using a regression function or a

neural network in order to maintain a lower THD.

10.5 MATLAB�/Simulink Programming Examples

Three MATLAB�/Simulink programming examples are presented in this section. (1) Single-

phase sinusoidal PWM; (2) Evaluation of a four-pulse wave; (3) Random carrier-frequency

PWM.

10.5.1 Programming Example 1: A Single-Phase Sinusoidal PWM

In this programming example, the reference sine wave has a frequency of 50Hz and

an amplitude of 0.8 V, while the triangular carrier wave has a frequency of 5 kHz and an

amplitude of 1V. The single-phase sinusoidal PWM may be modeled and simulated by the

following steps.

Uab

IGBT 1 IGBT 3 

IGBT 2 IGBT 4 

DC

Figure 10.25 Semiconductor devices and Uab pulse sequence.

Table 10.8 State of semiconductor switches according to the states of Uab.

Uab IGBT 1 IGBT 2 IGBT 3 IGBT 4

�1 Off On On Off

1 On Off Off On

0 On Off On Off

0 Off On Off On
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Step 1 Build a Simulink model of the triangular carrier PWM ‘single_phase_inverter.mdl’ as

shown in Figure 10.26.

The PWM model consists of a ‘Sine Wave’ block, two ‘Relational Operator’ blocks, a

‘Repeating Sequence’ block, and an ‘Out1’ block. The ‘Relational Operator’ blocks simulate

the modulation operation, the ‘Repeating Sequence’ block simulates the triangular-carrier

wave, and the ‘Out1’ block outputs Uab for evaluation. The parameters of these blocks are as

listed in Table 10.9.

1
Out1

Ub

Uab

Ua

Sine wave

Scope2

Scope1Repeating
Sequence

<=

<=

-1

Gain

Figure 10.26 Simulink model of triangular carrier PWM.

Table 10.9 Parameters of Simulink model ‘single_phase_inverter.mdl’.

Name Function Parameter

Sine Wave Generate sinusoidal

reference wave

Amplitude¼ 0.8
Frequency¼ 2�pi�50
Phase¼ 0

Repeating Sequence Generate 5 kHz triangular

carrier wave

Time values: T_V created by

the MATLAB� program

Output values: o_V created by

the MATLAB� program

Simulation parameter Manage simulation process Solver options: Fixed-step

Fixed-step size:1/204800

Simulation time: 0–0.2 s
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Step 2 Write the following MATLAB� program (with filename ‘Evaluation.m’ on the book

companion website) for waveform evaluation.

function y¼Evaluation(x) % Evaluate x

N¼1024�4;
H_pwm¼fft(x,N); % FFT calculation

Harmonica ¼ H_pwm(1:N/2); % Cut half of FFT

ss¼abs(Harmonica); % Calculate magnitude of FFT

components

s_V¼ss/(N/2); % Calculate real amplitude of output

components

assignin(‘base’,‘s_V’,s_V); % Assign array ‘s_V’ into workspace

s_THD¼0; % Calculate THD of waveform

for i¼3:N/2,

s_THD¼s_THD þ s_V(i)^2;

end

THD¼sqrt(s_THD)/s_V(2)

V_Fundamental¼s_V(2) % Obtain amplitude of fundamental

waveform

s_Vh¼s_V;

s_Vh(2)¼[ ]; % Cut off fundamental component

Max_Harmonic ¼max(s_Vh) % Calculate amplitude of max

harmonic component

P_Fundamental¼s_V(2)^2/2 % Calculate power of fundamental

component

DC¼s_V(1)/2 % Obtain amplitude of DC component

s_Vfft¼s_V;

Pt_FFT¼DC^2 þ sum(s_Vfft.^2)/2 % Total power of FFT components

Pt_PWM¼sum(x.^2)/4098 % Total power of standard PWM signal

s_Vfft(1)¼[ ]; % Cut off DC component

s_Vfft(1)¼[ ]; % Cut off fundamental component

P_all_harmonics ¼ sum(s_Vfft.^2)/2 % Calculate power of all harmonic

components

tx¼(0:1:(N/2-1))�50; % Set x-axis as Hz

bar(tx,s_V) % Plot spectrum of PWM output

axis([-5000 50000 0 1]); % Set x-axis and y-axis ranges

end

Step 3 Enter the following code to create the two arrays T_V and o_V in the MATLAB�

workspace. Run the Simulink model ‘single_phase_inverter.mdl’, and run the evaluation

program written in Step 2. The two arrays (T_V and o_V) are used by the ‘Repeating

Sequence’ block to simulate the triangular carrier wave with a frequency of 5 kHz and an

amplitude of 1V.

NN=200; % Switch frequency 5kHz, 200 points during 0.02 seconds

for I=1:NN/2 % Create +1 and -1V voltage series

o_V(2*I)=1;

o_V(2*I-1)=-1;

end

o_V(NN+1)=-1;

T_V=(0:0.02/NN:0.02); % Create time series of carrier wave

assignin(’base’,’T_V’,T_V); % Save to workspace

assignin(’base’,’o_V’,o_V); % Save to workspace
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Then enter the following MATLAB� commands to evaluate the PWM output:

[tout,xout,yout]¼sim

(‘single_phase_inverter ’,0.02);
% Run Simulink model ‘single_phase_

inverter.mdl’
Evaluation(yout); % Call MATLAB program ‘Evaluation.m’

The evaluation results are shown on the computer screen as follows and a spectrum of the

PWM output wave is shown in Figure 10.8.

THD= 0.7739

V_Fundamental= 0.7970

Max_Harmonic= 0.3182

P_Fundamental= 0.3176

DC= 0

Pt_FFT= 0.5078

Pt_PWM= 0.5076

P_all_harmonics= 0.1902

The evaluation results are as listed in the column ‘Uab of standard 5 kHz PWM’ in Table 10.1.

Step 4 Enter the command ‘plot(tout, yout)’ to plot the single-phase sine PWM output

waveform Uab with 5 kHz carrier frequency, as shown in Figure 10.27.

10.5.2 Programming Example 2: Evaluation of a Four-Pulse Wave

A four-pulse wave is modeled and simulated by the following steps.

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
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Figure 10.27 Waveform Uab of sine PWM output with 5 kHz carrier frequency.
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Step 1 Build a Simulink model ‘Four_pulse.mdl’ as shown in Figure 10.28.

Step 2 Input the following vectors into the ‘Repeating Sequence’ block.

Time Values =

[0,0.00199,0.00199,0.0049,0.0049,0.005,0.005,0.00791,0.00791,0.0119,

0.0119,0.01481,0.01481,0.0152,0.0152,0.01811,0.01811,0.02]

Output Values =

[0,0,1,1,0,0,1,1,0,0,-1,-1,0,0,-1,-1,0,0]

Step 3 Enter the following MATLAB� commands (or run the program ‘Run_Exp2.m’ on the

book companion website).

[tout,xout,yout]¼sim

(‘Four_pulse’,0.02);
% Call Simulink model named as ‘Four_pulse.mdl’

Evaluation(yout); % Call MATLAB program ‘Evaluation.m’
bar(s_V); % Plot bar graph

axis([-1 30 0 1.1]); % Set x-axis and y-axis ranges

The evaluation results are as follows and a spectrumof the PWMoutput shown in Figure 10.6

is also obtained.

THD = 0.4376

V_Fundamental = 0.9882

Max_Harmonic = 0.3007

P_Fundamental = 0.4883

DC = 2.4414e-004

Pt_FFT = 0.5818

Pt_PWM = 0.5815

P_all_harmonics = 0.0935

10.5.3 Programming Example 3: Random Carrier-Frequency PWM

A random carrier-frequency PWM may be modeled and simulated by the following steps.

1
Out1

ScopeRepeating
Sequence5

Figure 10.28 Simulink model of the four-pulse wave.
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Step 1 Open the Simulinkmodel ‘single_phase_inverter.mdl’ in Programming Example 1 and

save it as ‘triangle.mdl’.

Step 2 Replace the elements of the arrays T_V in the ‘Repeating Sequence’ block in the

Simulink model with random numbers by entering following MATLAB� code:

clear;

clc;

NN=200; % Switch frequency 5kHz, 200 points during 0.02 seconds

for I=1:NN/2 % Create +1 and -1V voltage series

o_V(2*I)=1;

o_V(2*I-1)=-1;

end

o_V(NN+1)=-1;

T_V(1) =0; % Create time series of carrier wave with random number

for i=2:NN+1,

T_V(i)=T_V(i-1)+0.00002+rand(1)*0.00016;

% rand(1) yields a pseudorandom number range as -1~ +1

End

assignin(’base’,’T_V’,T_V); % Save to workspace

assignin(’base’,’o_V’,o_V); ‘% Save to workspace

Step 3 Enter the following MATLAB� commands to simulate the random carrier-frequency

PWMand evaluate thewaveforms by the evaluation programwritten in Step 2 in Programming

Example 1.

[tout,xout,yout]¼
sim(‘triangle’,0.02);

% Call Simulink model named as ‘triangle.mdl’

Evaluation(yout); % Call MATLAB program ‘Evaluation.m’

After running the aboveMATLAB� program and the evaluation program, a possible evaluation

result is obtained as follows:

THD= 0.7708

V_Fundamental= 0.8009

Max_Harmonic= 0.0813

P_Fundamental= 0.3207

DC= 0.0034

Pt_FFT= 0.5112

Pt_PWM= 0.5110

P_all_harmonics= 0.1905

A spectrum of the PWM output similar to that in Figure 10.10 will also be obtained.

Because the carrier frequency is randomly produced, the evaluation results may vary from

one simulation to another.
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Step 4 Enter the command ‘plot(tout, yout)’ to plot the randomcarrier-frequency PWMoutput

Uab, as shown in Figure 10.29.

10.6 Experiments on Various PWM Strategies

The GA-optimized single-phase random-carrier-frequency PWM inverter is implemented and

compared with the standard PWM inverter by the hardware setup in Figure 10.30. The

experimental facility consists of a TMS320F2812 DSP board, an IRAMX16UP60A inverter

module, a digital oscilloscope, a PC host computer, and aDCpower supply. TheDSP facilitates

the implementation of various PWM strategies in real-time.

10.6.1 Implementation of PWM Methods Using DSP

DSP TMS320F2812 is able to generate two types of PWM waveform, viz. symmetric

waveform and asymmetric waveform. The symmetric PWM has less harmonic distortion

(Texas Instruments Incorporated, 2003) than the asymmetric PWM, but the latter gives twice

the resolution. In this chapter, the symmetric PWM is chosen for implementing the various

PWM methods. The main steps (Texas Instruments Inc., 2003) to operate PWM in

TMS320F2812 DSP chip are:

a. Initialize a 16-bit ‘Timer Period Register’ and a 16-bit ‘Full Compare Register’,

respectively.
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Figure 10.29 Waveform Uab of the random carrier-frequency PWM.
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b. Load the PWM period into the ‘Timer Period Register’ and the sinusoidal reference value

into the ‘Full Compare Register’, respectively.

c. Compare the output of a ‘General Purpose Timer’ with the ‘Timer Period Register’. When

they are equal, two pairs of pulse signals are generated from a ‘Full Compare Unit’ and a

software interrupt is triggered.

d. Upon receiving the software interrupt signal, the program updates the value in the ‘Timer

PeriodRegister’ and thevalue in the ‘Full CompareRegister’ according to the desired carrier

frequency requested by different PWM methods.

e. Repeat from step (b) to step (d).

Three PWMmethods are implemented by the DSP-based inverter. The operating strategies are

described as follows:

A. Standard PWM method, which applies a constant carrier frequency;

B. Random carrier-frequency PWM, which employs a random carrier frequency generated by

a pseudorandom function that depends on a special seed sequence; and

C. GA-optimized random-carrier-frequency PWM method, in which the random-carrier-

frequency series is stored in a DSP, the optimization having been performed optimized

off-line by GA.

It should be noted that the above implementation of the GA-optimized PWMmethod does not

incur extra hardware cost and programming complexity compared with other PWM

techniques.

PC

IRAMX16UP60A Module 

IGBT 1

Gate drive 

Ua

Ub

TMS320F2812 
DSP board 

DC

IGBT 3

IGBT 2 IGBT 4

Figure 10.30 PWM inverter experimental system. (Reproduced by permission of K.L. Shi and H. Li,

“Optimized PWM strategy based on genetic algorithms,” IEEE Transaction on Industrial Electronics,

52(5), 2005: 1458–1461. � 2005 IEEE.)
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10.6.2 Experimental Results

In order to compare the performance of three PWMmethods, the normalized output voltage of

PWM inverter and the corresponding harmonic spectrum at different switching frequencies are

displayed on a digital oscilloscope as shown in Figures 10.31–10.33.

10.6.2.1 Standard PWM

When the carrier frequency is constant, the DSP-controlled inverter outputs standard PWM

waves. Figure 10.31 shows the output voltageUab when the carrier frequency is 1 kHz, 5 kHz,

10 kHz, and 15 kHz, respectively.

Figure 10.31 Outputwaveforms of standard PWMinverter. Upper trace:VoltageUab (Time scale: 4ms/

div; voltage scale: 2V/div) Lower trace: Frequency spectrum (Frequency scale: 2.5 kHz/div; voltage

scale: 300mV/div). (a) Carrier frequency¼ 1 kHz (b) Carrier frequency¼ 5 kHz (c) Carrier frequency¼
10 kHz (d) Carrier frequency¼ 15 kHz. (Reproduced by permission of K.L. Shi and H. Li, “Optimized

PWM strategy based on genetic algorithms,” IEEE Transaction on Industrial Electronics, 52(5), 2005:

1458–1461. � 2005 IEEE.)
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10.6.2.2 Random Carrier-Frequency PWM

When the carrier frequency is randomly changed, the DSP generates a random carrier-

frequency PWM. Figure 10.32 shows the output voltage Uab when the mean frequency of

the carrier is 1 kHz, 5 kHz, 10 kHz, and 15 kHz, respectively.

Figure 10.32 Output waveforms of random PWM inverter. Upper trace: VoltageUab (Time scale: 4ms/

div; voltage scale: 2V/div) Lower trace: Frequency spectrum (Frequency scale: 2.5 kHz/div;

voltage scale: 300mV/div) (a) Mean random carrier frequency¼ 1 kHz (b) Mean random carrier

frequency¼ 5 kHz (c) Mean random carrier frequency¼ 10 kHz (d) Mean random carrier frequency¼
15 kHz. (Reproduced by permission of K.L. Shi and H. Li, “Optimized PWM strategy based

on genetic algorithms,” IEEE Transaction on Industrial Electronics, 52(5), 2005: 1458–1461. � 2005

IEEE.)
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10.6.2.3 GA-Optimized Random-Carrier-Frequency PWM

The GA-optimized random-carrier-frequency series is obtained off-line by a MATLAB�

program and then copied to the DSP PWM program to replace conventional carrier operation.

When the optimized program is loaded into the experimental DSP device, the inverter gives

optimized performance as presented in Figure 10.33.

Figure 10.33 Output waveforms of GA-optimized random PWM inverter Upper trace: Voltage Uab

(Time scale: 4ms/div; voltage scale: 2V/div). Lower trace: Frequency spectrum (Frequency scale:

2.5 kHz/div; voltage scale: 300mV/div). (a) Mean of GA-optimized carrier frequency¼ 1 kHz (b) Mean

of GA-optimized carrier frequency is 5 kHz (c) Mean of GA-optimized carrier frequency¼ 10 kHz (d)

Mean of GA-optimized carrier frequency¼ 15 kHz. (Reproduced by permission of K.L. Shi and H. Li,

“Optimized PWM strategy based on genetic algorithms,” IEEE Transaction on Industrial Electronics,

52(5), 2005: 1458–1461. � 2005 IEEE.)
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10.7 Summary

In this chapter, real-coded genetic algorithm has been employed to optimize a single-phase

inverter by using four random PWM methods. They are (1) GA-optimized random-carrier-

frequency PWM, (2) GA-optimized random-pulse-position PWM, (3) GA-optimized random-

pulse-width PWM, and (4) GA-optimized hybrid random pulse-position and pulse-width

PWM. Simulation studies have demonstrated that the GA-optimized randomPWM is superior

to conventional PWM techniques when harmonic energy spread and THD are considered.

DSP-based inverter experiments confirm the feasibility of implementation of GA-optimized

random-carrier-frequency PWM. The present investigation has demonstrated the capability of

theGA-optimized randomPWMtechnique in improving the power quality of inverters. Further

work would be to extend the technique to three-phase PWM inverters that find wider

applications in induction motor drives.
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11

Experimental Investigations

11.1 Introduction

This chapter discusses how the algorithms of induction motor intelligent control are realized

physically by hardware. The inverter, the controller, and the induction motor are essential

components for implementing the control algorithms. Different control algorithms, however,

may require different hardware configurations. For example, the open-loop V/Hz controller

can be implemented using analog components, and the vector controller can be implemented

using digital devices such as a DSP (Ben-Brahim and Kawamura, 1992; Kubota, Matsuse

and Nakano, 1993; Xu and Novotny, 1996) or a PC (Zhong,Messinger and Rashad, 1991). The

fuzzy control algorithm can be implemented using a fuzzy microcontroller or a DSP device

with a fuzzy-logic program; the neural-network algorithm can be implemented with neural

network devices; the expert system algorithm may be implemented by a DSP device with

an expert-system control program. It should be mentioned that the implementation of the

expert-system control algorithm requires a high-precision speed sensor, such as the expensive

Gurley’s Model R158 Rotary Incremental Encoder.

Induction motor controllers with analog components have several drawbacks. Aging

and temperature rise bring about component variations and regular system adjustments

are required. As the parts count increases the reliability of the system decreases. Analog

components also raise tolerance issues and upgrades are difficult to achieve as the design is

hardwired. Digital systems offer improvements over analog designs. Drift is eliminated

since most functions are performed digitally. Upgrades can easily be made in software and

parts count is also reduced since most calculation functions can be handled on a single chip.

Two fixed-point-DSP motor controllers, namely Analog Devices Inc.’s ADMC331 and Texas

Instruments’s TMS320F240, are available commercially. Each system integrates a digital

signal processor chip with the peripherals of a micro-controller and hence is suitable for

inductionmotor control applications. The fixed-point DSP is preferred for two reasons. Firstly,

its cost is much less than that of floating point DSPs. Secondly, a dynamic range of 16 bits and

the capability of executing 26 MIPS (million instructions per second) are sufficient for most

motor controllers. ADMC331 and TMS320F240 have comparable technical specifications

and performance levels, such as the executing capability, memory size, and micro-controller

Applied Intelligent Control of Induction Motor Drives, First Edition.   Tze-Fun Chan and Keli Shi.
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peripherals, but the former is less expensive. Hence, a Development Tool Kit ADMC331-

ADVEVALKIT (delivered by Analog Devices Inc.) is chosen for the experimental studies.

The kit is complete with hardware (ADMC331 processor board and ADMC connector board),

software (assembler, linker and debugger), and serial cable for connection to a PC.

With the ADMC331 as the core element, a DSP-based hardware system is configured to

implement some of the intelligent control algorithms. The system consists of a power

module, a DSP-processor, 3-phase current sensors, an encoder, an induction motor, a host

PC, a data-acquisition card and a data-acquisition PC. Based on the special hardware

configuration and some Assembly and Cþþ referencing programs and manuals delivered

by Analog Devices Inc. Amirix Inc., and Advantech Co., the following program files in

Assembly language and Cþþ language have been developed for the experimental studies:

(a) DSP main program and subroutines for induction motor run-up experiment, (b) DSP

main program, routines, and subroutines of fuzzy/PI controller, (c) DSP FOC main program

for the GA-EKF experiment, (d ) a data-acquisition Cþþ program for the DSP code debug

on a PC.

Four experiments have been performed: (1) determination of the electrical parameters of

the 147-W induction motor used in the drive system, (2) an induction motor run-up

experiment to verify the induction motor model, PWM model, encoder model, and decoder

model built in Chapter 3, (3) a DSP based experiment on the fuzzy/PI two-stage controller

to verify the control algorithm proposed in Chapter 6, and (4) an experiment to verify the

GA-EKF speed estimation algorithm proposed in Chapter 9. Section 11.8 presents four DSP

Programming examples on a floating-point digital signal processor (DSP) TMS320F28335

delivered by Texas Instruments Inc.

11.2 Experimental Hardware Design for Induction Motor Control

The experimental hardware of the intelligent control is configured by the following compo-

nents and is shown in Figure 11.1, while photographs of the experimental system are shown in

Figure G.1 and G.2 of Appendix G.

11.2.1 Hardware Description

11.2.1.1 DSP ADMC331 Processor Board

Analog Devices Inc.’s ADMC331 is a low cost, single-chip DSP-based controller, which is

suitable for implementing an induction motor drive. The ADMC331 integrates a 26 MIPS,

fixed-point DSP core with a complete set of motor control peripherals. The DSP core of the

ADMC331 is the ADSP-2171 with ADSP-2100 based architecture, which is completely code

compatible with the ADSP-2100 DSP family and combines three computational units, data-

address generators and a program sequencer. The computational units comprise an ALU,

a multiplier/accumulator (MAC) and a barrel shifter (comprising the shifter array, the OR/

PASS logic, the exponent detector, and the exponent compare logic). The ADSP-2171 has

instructions for bit manipulation, multiplication (X squared), biased rounding and global

interrupt masking. In addition, two flexible, double-buffered, bidirectional, and synchronous

serial ports are included in the ADMC331.
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Figure 11.1 Hardware configuration for the experiments on intelligent control of induction motor.

(Reproduced by permission of K.L. Shi, T.F. Chan, Y.K. Wong and S.L. Ho, “Speed estimation of an

induction motor drive using an optimized extended Kalman filter,” IEEE Transactions on Industrial

Electronics, 49(1), 2002: 124–133. � 2002 IEEE.)

Component Manufacturer

(1) ADMC331 Processor Board Analog Devices Inc.

(2) ADMC Connector Board Analog Devices Inc.

(3) Integrated Power Stage (IRPT1058A) International Rectifier Inc.

(4) Encoder (GBZ02) China Sichuan Opto-electronic Co.

(5) Current Sensor Board (3I411A) China WB Automation Institute.

(6) Data-Acquisition Card (PCL818HG) Taiwan Advantech Co. Ltd.

(7) Isolating Transformer China Chengdu Transformer Co.

(8) AC Induction Motor (Model 295) USA Bodine Electric Co.

(9) Data-Acquisition PC (PII350) Intel Inc.

(10) Host PC (ThinkPad 600E PII 300) IBM Co.
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The ADMC331 provides 2K� 24-bit program memory RAM, 2K� 24-bit program mem-

ory ROM and 1K� 16-bit data-memory RAM. The program and data-memory RAM can be

bootloaded through the serial port from a serial ROM (SROM), E2PROM, asynchronous

(UART) connection or synchronous connection. The program memory ROM includes a

monitor that adds software-debugging features through the serial port. In addition, a number

of pre-programmed mathematical and motor control functions are included in the program

memory ROM. The motor control peripherals of the ADMC331 include a 16-bit center-based

PWM generation unit that can be used to produce high accuracy PWM signals with minimal

processor overhead and seven analog input channels. The device also contains two auxiliary

8-bit PWMchannels, a 16-bit watchdog timer and it has expansion capability through the serial

ports and 24-bit digital I/O ports.

11.2.1.2 ADMC Connector Board

The ADMC connector board is a part of the development tool kit ADMC331-ADVEVALKIT

produced by Analog Devices Inc. The connector board offers the following functions:

. Connector (J1) accepts speed signals from the encoder.

. Connector (J3) provides analog inputs that are fed to the ADC interface circuitry of the

ADMC331 processor chip. It can receive the signals from the current sensors.
. Connector (J4) brings the six PWM output signals from the DSPADMC331 to International

Rectifier PowIRtrain module.
. An eight-channel, 12-bit serial Digital to Analog Converter (DAC AD7568 chip) interfaces

to the DSP-based motor controller through serial port SPORT0 on the ADMC331 chip. The

eight analog outputs are brought to the data-acquisition PC through connector (J6).

11.2.1.3 Integrated Power Stage

The integrated power stage adopts the IRPT1058C PowIRtrain of International Rectifier Inc.,

which provides the complete conversion function for a 0.75 hp (0.56 kW) induction motor

controller with variable frequency and variable voltage. The PowIRtrain combines a power

module IRPT1058A with a Driver-Plus Board IRPT1058D. The power module IRPT1058A

contains a single-phase input bridge rectifier and a 3-phase IGBT inverter. Figure 11.2 shows

the block diagram of the power module.

The specifications of IRPT1058A are as follows.

. Input Power: Voltage 220V, single-phase, 50/60Hz

. Output Power: Voltage 0–230V (defined by external PWM control)

. Pulse deadtime: 0.8 ms

. Minimum input pulse width: 1ms

. DC link voltage: 230V

. Isolation voltage: 2500V rms

. DC bus filter capacitor: 2� 680mF, 400V

The Driver-Plus Board IRPT1058D contains DC link capacitors, capacitor soft charge

function, gate driver IR2132 for insulated gate bipolar transistors (IGBT), DC bus voltage
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and current feedback circuit, protection circuitry and system power supply. Pulse-Width

Modulated (PWM) signals from the DSPADMC331 are input to the gate drive of the inverter

IGBT switches to produce a 3-phase voltage of variable magnitude and frequency. The system

power supply offers the user 5 and 15V to power the DSP controller.

11.2.1.4 Encoder

An encoder manufactured by China Sichuan Opto-electronic Co. is used for the motor speed

measurement. The encoder is an optoelectronic feedback device that uses a patterned optical

mask and a LED light source and transistor photosensor pair. As the motor shaft rotates, the

light source either passes through the disk, or is blocked by the disk. The two-emitter/detector

pairs produce two digital output waveforms which are 90 degrees out of phase with each other.

The various components making up the encoder are shown in Figure 11.3.

Because theADMC331 does not have an on-chip encoder interface, the encoder is interfaced

to the AMDC331 using programmable I/O (PIO) lines. A DSP software, ENCODER.DSP is

used to calculate the shaft speed.

U
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W

G1 G2 G3 G4 G5 G6

AC input 
(220V) 

Single phase 
rectifier

Voltage source inverter 

IGBT 5 IGBT 3 IGBT 1 

IGBT 6 IGBT4 IGBT 2 

Figure 11.2 Power module IRPT1058A.

Figure 11.3 Various components making up the encoder.
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Encoder features:

Model GBZ02

. 200 pulses/revolution

. Rise time <100 ns

. Fall time <100 ns

. Output voltage VH¼ 2.5V, VL¼ 0V

. Single þ 5V DC supply.

11.2.1.5 Current Sensor Board

The current sensor board is used to produce three analog voltages proportional to the motor

phase currents. These analog voltages are scaled for input to the ADC on the connector (J3)

of the ADMC331 DSP. This board is used to sense currents up to 10 A and provides

a voltage output suitable for sampling with an analog to digital converter (ADC). The current

sensor board is useful in motion control and power supply designs. It has the following

features:

. Two phase current sensing based on closed-loop Hall effect current transducer.

. Single þ5V DC supply.

. Working current: 42mA.

. Low pass filtering on outputs.

11.2.1.6 PC Data-Acquisition Card

Analog to digital (A/D) conversion changes analog voltage or current levels into digital

information. The conversion is necessary for the computer to process or store the signals.

PCL-818HG of Advantech Co. is a low-cost high-performance data-acquisition board. It is

also called a PC-based data-acquisition board. PCL818HG is configured on an ISA slot of

PC motherboard and is used to acquire the information of voltages, currents, and rotor

speed from the induction motor drive. Specifications of the PCL818HG board are listed as

follows.

. A/D conversion time: 8ms

. Maximum data throughput: 100 kHz for input range �10V and �5V

35 kHz for input range �1V, �0.5V, and �0.1V
. Accuracy: 0.01–0.04%
. Channels: 16 single-ended or 8 differential analog inputs
. Resolution: 12 bits A/D converter
. Input range selection: Software controlled
. Data transfer: Interrupt (IRQ) in Chapter 1 or DMA in Chapter 3
. Input impedance: 10MO
. Input overvoltage: �30V DC max.
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11.2.1.7 Isolation Transformer

An isolation transformer (Single-phase 220V 300W) manufactured by China Chengdu

Transformer Company is used to provide the following benefits:

. Improved safety.

. Reduced EMI emissions onto the power lines. As the controller is modified by adjusting

parameters, power quality issues may arise.

11.2.1.8 AC Induction Motor

The motor is a Bodine Electric Company (USA) model 295, 147-W (1/5 HP), 230-V induction

motor. Themotor is star or ‘Y’ connected with no access to the neutral point. Themotor ratings

are as follows:

. Rated voltage, per phase: 230VAC

. Rated current, per phase: 2A

. Starting current: 4.5A

. Stator resistance per phase: 14.6O

. Pole number: 4

. Net weight: 30 pounds

11.2.1.9 Data-acquisition PC

A Pentium II 350 PC is used for the data-acquisition PC in the experiments of the DSP-based

induction motor drive. It performs the following functions:

. Monitoring the drive system by acquiring data from theADMC connector board, through the

data-acquisition card PCL818HG mounted on an ISA port of the personal computer.
. Storing, plotting, and analyzing the acquired data.

11.2.1.10 Host PC

A notebook computer (IBMThinkPad 600E PII 300) is used as a host PC in the experiments of

the DSP-based induction motor drive. It is used for:

. Loading an executable program to the DSP ADMC311 via a RS232 port on the host

computer.
. Starting and debugging the program for driving the induction motor.

11.2.1.11 Power Budget of DSP Controller

Table 11.1 summarizes the power budget for the electronics in the experimental system. Note

that this budget does not include the drive current required by the induction motor. The motor

power requirements (147W) are well within the PowIRtrain’s 560W rating.
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11.3 Software Development Method

Figure 11.4 shows the software development process for creating an application to run on the

ADMC331. It comprises the following steps:

1. A source code in ADSP-21xx assembly language is created by an editor that produces plain

text files [.DSP].

2. The assembly language code is translated by the ADSP-2100 Family Assembler into object

code.

3. The ADSP-21xx Linker generates an executable program [.exe] by linking together

separately-assembled modules.

4. The executable program is run at debug state on ADMC331 board by using the software

‘ADMC331 Motion Control Debugger’ of Analog Devices Inc.

5. Modify the source program and repeat steps (2) to (4) until the desired output is obtained.

Each DSP program is organized into a number of source code files (with .DSP extension) each

handling a separate function. Each DSP source code file (except the main program) has an

accompanying header file (.H extension) which is used to declare functions and variables

locatedwithin its associated .DSP file. A program structure usingmultiple files and header files

results in minimal coupling between blocks.

. A ‘program’ is one that can run independently. Its source file has the extension .DSP or .C, for

example, main program MAIN.DSP or ACQUIRE.C.

Table 11.1 Power budget for the electronics in the experimental system.

Component Voltage Current(max)

ADMC connector board, ADMC331 processor board 5VDC 200mA

PowIRtrain 5VDC 25mA

15VDC 25mA

Encoder 5VDC 25mA

Current sensor board 5VDC 50mA

Total 325mA

Assembler 
source  
files [.DSP]

Assembler Linker
Executable  
files [.exe]

Motion control 
debugger on 
ADMC331 board 

Generate 
code

Debug 

(1) 

Analysis of data,  
variable, or output

(3) (2) 

(4) (5) 

Figure 11.4 Software development procedure on ADMC331.
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. A ‘routine’may be called by a ‘program’. It has the extension .DSP, for example, CAPTURE.

DSP.
. A ‘subroutine’ is not an independent DSP program, but only a program segment located in

a ‘program’ or a ‘routine’ and called only by a ‘program’ or a ‘routine’. In ADSP-21xx

assembly language structure, a ‘subroutine’ begins from a label and ends with ‘RTS’.

In program debugging, one of the following three methods may be employed to monitor the

data, variable, and input/output of the developed program:

1. Multimeter: Certain steady-state values in the running programmay be observed at theDAC

output ports on the ADMC connector board by a digital multimeter.

2. Reading the data memory on the DSP: ADMC331 DSP has a 1k x 16-bit data memory

(RAMwith address form 0x3C00 to 0x3FFF) which can store successive data values to aid

in debugging the code and tuning the controller parameters. The stored data values may

then be examined by displaying them with Motion Control Debugger’s plot memory

function, or by dumping them to a file on the PC using a dump memory command. From

amemory dump file, the data can be further analyzed. Due to limitation of the data memory

size on the DSP, the number of captured data is less than 1000.

3. Acquiring data by PCL818HG: AVisual Cþþ program is designed to implement the data

acquisition from the DAC to the PC. The eight-way signals can be acquired at a sampling

rate up to 100 kHz.

11.4 Experiment 1: Determination of Motor Parameters

Tests were performed to determine the electrical parameters of the 147-W induction motor

manufactured by Bodine Electric Company. These parameters are required in the simulation

studies as well as in tuning of the PI controllers. The details are given in Appendix H.

11.5 Experiment 2: Induction Motor Run Up

In order to verify the voltage-input model, sinusoidal PWM model, encoder model, and

decoder model built in Chapter 3, the ADMC331 pulse-width-modulator (PWM switching

frequency of 10 kHz) block is used to generate a 3-phase, 60-Hz supply to run the motor up

to its base speed of 1800 r/min. The encoder GBZ02 is used to measure the angular speed of

the motor, while the data-acquisition board PCL818HG is used to acquire signals of the

angular speed into the data-acquisition PC from the DAC port on the ADMC connector

board.

The basic programs designed for this experiment are: (1) main program MAIN.DSP,

(2) routine PWM331.DSP (ADSP-21xx assembly language), to produce three PWMsignals,

(2) routine DAC.DSP, to write the reference phase voltages to the AD7568 digital to analog

converter (DAC), (3) routine ENCO.DSP, to detect pulses from the encoder, and (4) PC

program ACQUIRE.C (Cþþ language), to acquire the signals of voltage and angular speed

from theDAC, aswell as the encoder output signal to the data-acquisition PC for observation

and analysis.
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File Name Description

1. MAIN.DSP: DSP source code for main program (listed in Appendix I).

2. pwm331.dsp: pulse width modulator initialization and use routines.

3. pwm331.h: header file containing definitions for PWM331.DSP.

4. ENCODER.DSP: calculate shaft speed by reading the signal from an encoder.

5. DAC.DSP: writing to the AD7568 digital to analog converter (DAC) on the

ADMC connector board. The DAC is a 12-bit, 8-channel device,

and is accessed using the SPORT0 serial port on the DSP.

6. DAC.H: header file containing definitions for DAC.DSP.

7. build.bat: batch file to convert the DSP source code into an executable file,

main.exe which can be downloaded and run on the DSP.

8. ACQUIRE.C: Cþþ source code for acquiring phase voltage signals and encoder

output signal to the PC. This is built into an executable file

acquire.exe to run on the data-acquisition PC with the data-acquisition

card PCL818HG.

9. ACQUIRE.H: header file containing definitions for ACQUIRE.C.

11.5.1 Program Design

11.5.1.1 PWM Algorithm

The algorithm produces three PWM signals whose fundamental outputs may be described in

normalized variables as:

VrefA ¼ ksinðyÞ ð11:1Þ

VrefB ¼ ksinðyþ 2p=3Þ ð11:2Þ

VrefC ¼ ksinðyþ 4p=3Þ ð11:3Þ

where k2 [0,1] is the amplitude and frequency scale factor. The angle y is calculated

incrementally for each PWM cycle as:

yðnÞ ¼ yðn� 1Þþ 2pkfmaxTs

¼ yðn� 1Þþ kD
ð11:4Þ

where Ts is the PWM switching period and fmax is the maximum fundamental frequency at

k¼ 1. For an assumedmaximum frequency fmax of 100Hz and a PWM switching frequency of

10 kHz (i.e., Ts¼ 0.0001s), D¼ 0.0628 rad.

A suitable sine approximating function (Analog Devices, 1992) is given by:

sinðxÞ ¼ 3:140625xþ 0:020264x2 � 5:325196x3 þ 0:544678x4 þ 1:800293x5 ð11:5Þ

The sine function is implemented by calling a subroutine ADMC_SIN in ADMC331 ROM.

Having calculated the sine functions and scaled by k to produce the reference voltages, the
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PWM on-times may be calculated as:

TA ¼ Ts

2
þ Ts

2
VrefA: ð11:6Þ

Similar equations can be written for the other two phases.

11.5.1.2 Estimating the Actual Stator Frame Voltages

In order to estimate the actual 3-phase voltages (Vac_a, Vac_b, Vac_c) applied to the motor, the

VDC_HANDLING subroutine in MAIN.DSP uses the DC bus voltage value to perform the

following calculations:

Vac a ¼ Va � Vdc measured

Vdc max

ð11:7Þ

Vac b ¼ Vb � Vdc measured

Vdc max

ð11:8Þ

Vac c ¼ Vc � Vdc measured

Vdc max

: ð11:9Þ

Va, Vb, and Vc are the requested voltages, but if the DC bus voltage is less than the maximum

value, such as when the motor is heavily loaded, the applied voltages will be reduced.

11.5.1.3 Digital to Analog Converter

The routine DAC.DSP writes digital values via the AR register to the appropriate location in

a buffer. The resulting polarity is then correct at the DAC screw terminals on the ADMC

connector board. Table 11.2 gives some examples of digital values used as parameters to the

DAC subroutines and the resulting analog voltages produced.

When a stator phase-voltage is 0V in an algorithm and its digital value in the DSP program is

defined as 0x0000 or 0xFFFF, the analog voltage output from the DAC is 2.5V, according to

Table 11.2.When the stator phase-voltagemagnitude is 188Vin the algorithmand its digital value

in the DSP program is defined as 0x3FFF, the analog voltage output from the DAC is 3.75V.

Table 11.2 DAC output voltages for various digital inputs.

Digital Value Analog Voltage

0x8000 0V

0xBFFF 1.25V

0xFFFF 2.5V

0x0000 2.5V

0x3FFF 3.75V

0x7FFF 5V
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11.5.1.4 Encoder Functions

The routine ENCO.DSP is used to detect pulses from the encoder, and a programmable timer

on ADMC331 enables the motor speed to be determined. The file contains three subroutines:

(1) Init_encoder subroutine: it is used to initialize the encoder subsystem; (2) Timer_isr

(interrupt service routine) subroutine: on each timer interrupt, the counter variable is

incremented. ALU saturation mode is enabled so that the counter value will only go as high

as 0x7FFF. (3) Pio_isr subroutine handles changes detected on the encoder PIO line with

a rising edge interrupt.

11.5.1.5 Data Acquisition

ACþþ code file ACQUIRE.C is written to acquire stator voltages and encoder signals via the

PCL818HG card to the data-acquisition PC using the direct memory access (DMA) method.

DMA is a fast data-transfer method by allowing external devices to transfer data directly to the

PC memory without involving the interrupt commands of the system CPU. An executable

programACQUIRE.EXE is produced from the Cþþ code ACQUIRE.C and is run in the data-

acquisition PC.

11.5.2 Program Debug

The program debug procedure comprises the following steps:

1. Disconnect the inverter PowIRtrain from the DSP ADMC331.

2. Produce an executable program main.exe using the batch file BUILD.BAT.

3. Invoke the ‘Motion Control Debugger’ program on the host PC.

4. Download the main.exe program from the host PC to DSP.

5. Click the run button on the host PC.

6. Observe and analyze the data, variable, and input/output values, by a digital multimeter, by

reading the data memory of ADMC331, or on the data-acquisition PC with the data-

acquisition card PCL818HG.

7. Modify the source code of assembly language and iteratively repeat steps (2) to (7), until

satisfactory voltage waveforms are obtained.

8. Connect the inverter PowIRtrain to theDSPADMC331 and replace the inductionmotor by

a larger resistor load (three 5K resistorswith ‘Y’ connection). The inverter output terminals

are connected to the voltage sensor (model 3V411A), so that the output line voltages, Vab

and Vac can be transferred to the data-acquisition PC via the data-acquisition card

PCL818HG.

9. Download the main.exe program from the host PC to DSP.

10. Run the acquire.exe program on the data-acquisition PC.

11. Click the run button on the host PC and click the start button on the data-acquisition PC.

12. Observe the inverter output line voltages on the data-acquisition PC. When the output of

the inverter is satisfactory, program debug is complete and the PowIRtrain may be

connected to drive the induction motor.
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11.5.2.1 Results of Debug At Step (6)

Figure 11.5 shows the voltagewaveformsVa,Vb, andVc (requested three phase voltages) which

are directly acquired by the data-acquisition card PCL818HG via the DAC on the ADMC

connector board.

In Figure 11.5, the requested phase-voltage magnitudes from DAC are 1.25V (¼ 3.75V�
2.5V). From Table 11.2, the requested phase-voltage magnitude should be 188Vin the control

algorithm and its digital value in the DSP program should be defined as 0x3FFF.

Figure 11.6 shows the output waveformsVah,Val,Vbh, andVch (three high-side PWMsignals

and a low-side PWM signal) which are directly acquired by the data-acquisition card

PCL818HG from terminals J4 on the ADMC connector board at a sampling rate of 35 kHz.

Because the signal values of PWMoutput are smaller (about 50mV), they have to be amplified

by the PCL818HG card before A/D transformation. With an amplification factor of 10, the

maximum sampling rate of the PCL818HGcard is limited to 35 kHz. If the four signalsVah,Val,

Vbh, and Vcb, are to be acquired simultaneously, the sampling rate of each signal is 8.75 kHz

(35/4 kHz), which is much lower than the minimum of 20 kHz (for 10 kHz PWM switching

frequency). Hence, the acquired signals in Figures 11.6 and 11.7 have larger distortions

and very narrow switching pulses cannot be shown. Nevertheless, it is confirmed that the

three PWM signals produce a balanced three-phase system at the desired output frequency

of 60Hz.
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Figure 11.5 Requested three phase voltages Va, Vb, and Vc output directly from DAC.
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Figure 11.7 shows thewaveform of the difference of the two PWM outputs Vah and Vbh. The

line-voltagemodulation process may be clearly seen. Comparing Figure 11.7 with Figure 3.31,

the experimental PWMwaveform verified that the PWM Simulink model built in Chapter 3 is

viable.

11.5.2.2 Results of Debug at Step (11)

At debug Step (11), the inverter PowIRtrain output line voltage is measured by the voltage

sensor (model 3V411A) with gain 0.01 and transferred to the data-acquisition PC via the data-

acquisition card PCL818HG at 20 kHz sampling rate. Figure 11.8 shows the line voltage Vab at

the inverter PowIRtrain output terminals. Because the voltage sensor gain is 0.01, the actual

magnitude of the line voltage in Figure 11.8 is 325V. Thewaveform suggests that the inverter is

operating at the desired output frequency of 60Hz.
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Figure 11.6 Output waveforms Vah, Val, Vbh, and Vch (three high-side PWM signals and a low-side

PWM signal) acquired at a sampling rate of 8.75 kHz at debug Step (6).
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Figure 11.7 PWM output waveform of Vah –Vbh acquired at a sampling rate of 8.75 kHz.
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After satisfactory debug results have been obtained, the PWM control programmay be used

to drive the induction motor.

11.5.3 Experimental Investigations

The experimental investigations start with the following steps:

1. Invoke the ‘Motion Control Debugger’ program on the host PC.

2. Download the main.exe program from the host PC to DSP.

3. Run the acquire.exe program on the data-acquisition PC.

4. Click the run button on the host PC.

5. Click the start button on the data-acquisition PC.

When the executable programmain.exe is downloaded into DSP, it is converted into a binary

file and located in ADMC331 programmemory at address from 0x0030 to 0x010D (occupying

222� 12 bit space), while the interrupt vector table is stored at address from 0x0000 to 0x002F.

Due to the unavailability of the ADSP-2100 Family Simulators software, program execution

time cannot be estimated.

Test Results

The rotor speed is calculated by calling the ENCO.DSP routinewhich reads the signal from the

encoder. Then, the rotor speed signal and signals of 3-phase voltages (Vac_a, Vac_b, Vac_c) are

acquired via DAC at a sampling rate of 40 kHz (sampling rate of each signal is 10 kHz) by the

acquire.exe program and are displayed on the data-acquisition PC. The 3-phase voltages

(Vac_a, Vac_b, Vac_c) have been estimated by the VDC_HANDLING subroutine on the DSP as

described in Equations (11.7), (11.8), and (11.9).

Figure 11.9 shows the estimated 3-phase voltages which are applied to the induction motor.

According to Table 11.2, the analog values of the stator voltages shown in Figure 11.9 have

been modified by:

Vestimated ¼ ðVacquire � 2:5Þ � 188

1:25
ðVÞ: ð11:10Þ
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Figure 11.8 Output line voltage Vab of the inverter PowIRtrain acquired at a sampling rate of 20 kHz.
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where Vacquire represents the voltage signal acquired by PCL818HG card from DAC on the

ADMC connector board, while Vestimated represents the estimated value of the stator phase

voltage.

Figure 11.10 shows the rotor speed response (time¼ 0 s� 0.8 s) calculated by the routine

ENCO.DSP and acquired by the data-acquisition card PCL818HG via the DAC port on the

ADMC Connector Board. At steady state, the motor runs at a speed of about 187 rad/s,

confirming that the output frequency of the inverter is 60Hz.
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Figure 11.9 Estimated 3-phase voltages (Vac_a, Vac_b, Vac_c).
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Figure 11.10 Rotor speed response (time¼ 0 s� 0.8 s).
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11.5.3.1 Verifying the Encoder and Decoder Models

Figure 11.11 shows the encoder output signal which is acquired at a sampling rate of 10 kHz,

while Figure 11.12 shows the rotor speed calculated from the encoder output signal, using the

decoder model shown in Figure 3.35 of Chapter 3.

Figure 11.13 shows the encoder output signal which is acquired at a sampling rate of 20 kHz

while Figure 11.14 shows the speed response calculated using the decoder model.

The simulationmodels of the PWM inverter, encoder, and decoder (which have been built in

Chapter 3) may be compared with the experimental results, for example, Figure 3.34 versus

Figures 11.11,11.13 and 3.40 versus Figures 11.12 and 11.14. Although a number of uncertain

factors in the experimental system (such as the load, motor parameter changes, calculation

tolerance, and noise) have not been accounted for, the simulation results of the encoder and

decoder in Chapter 3 are approximately the same as the experimental results. The encoder

and decoder models developed in Chapter 3 are thus verified.
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Figure 11.13 Encoder output signal acquired at a

sampling rate of 20 kHz.
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Figure 11.12 Actual speed response calculated

by the decoder model.
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Figure 11.11 Encoder output signal acquired at

a sampling rate of 10 kHz.
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Figure 11.14 Actual speed response calculated

by the decoder model.
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11.6 Experiment 3: Implementation of Fuzzy/PI Two-Stage
Controller

This experiment is designed to verify the algorithm of the fuzzy/PI two-stage controller which

has been described in Section 6.5 in Chapter 6. Source codes of the fuzzy/PI two-stage

controller are written by ADSP-21xx assembly language. The hardware system has been

described in Figure 11.1 and the software development method has been described in

Section 11.3. The contents of the .DSP and .H files of the DSP-based fuzzy/PI controller

are summarized as follows.

File Name Description

MAIN.DSP Induction machine control main program

FUZZY.DSP, FUZZY.H Fuzzy frequency controller

CURRENTMC.DSP CURRENTMC.H Current magnitude PI controller

STCPI.DSP, STCPI.H Stator-current PI controller

ADC331.DSP, ADC331.H Analog to digital converter of stator currents

DAC.DSP, DAC.H Writing to DAC on ADMC connector board

DIVIDE.DSP, DIVIDE.H Divide function

FPMATH.DSP, FPMATH.H Floating point math routines

MATH_32B.DSP, MATH_32B.H 32 bit math routines

PWM331.DSP, PWM331.H PWM functions

ROMUTIL.H ROM utility definitions

ENCO.DSP, ENCO.H Encoder functions

SPEEDSET.DSP, SPEEDSET.H Speed setpoint function

CONST331.H ADMC331-related constants

CAPTURE.DSP, CAPTURE.H Capturing variables to data memory of ADMC331

build.bat: Batch file to build the DSP source code into an

executable file main.exe which can be downloaded

and run on the DSP.

ACQUIRE.C, ACQUIRE.H: Cþþ source codes for acquiring signals to PC

11.6.1 Program Design

11.6.1.1 Control Main Program (MAIN.DSP)

Themain program isMAIN.DSP (listed inAppendix J), and the fileCONST331.H has constant

definitions. The file MAIN.DSP contains the initialization code, the main loop, and top level

software architecture. The initialization code makes calls to all of the various subroutines

which initialize a given function such as the encoder, DAC, and so on.

Design details of the fuzzy frequency controller, PI current magnitude controller, and stator

current controllers are described as follows.

11.6.1.2 Fuzzy Slip Frequency Controller (FUZZY.DSP)

Source code of the fuzzy frequency controller FUZZY.DSP contains (1) subroutine of

fuzzification operation of speed command, (2) subroutine of fuzzification operation of error
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between speed command and actual speed, (3) subroutine of fuzzy inference operation,

INFERE.DSP, and (4) subroutine of defuzzification operation.

Fuzzification Subroutine of Speed Command

The subroutine of fuzzification operation of speed command converts the crisp input values of

speed command oo
� to fuzzy sets. Fuzzy conversion involves the calculation of triangular

degrees of membership and calculation of linguistic values. With reference to Figure 6.32

(Membership function of speed command), the degrees of membership and linguistic values

can be calculated.

The six constants of fuzzification operation of speed command in Figure 11.15 are defined in

Table 11.3, while Table 11.4 summarizes the fuzzification operations of the speed command.

The subroutine segment (written in ADSP-21xx assembly language) to implement the

fuzzification operation of speed command is listed as follows.

FUZW: {subroutine begin}

FUZA: {label}

AR=WOC-WO1; {AR: ALU result register}

IFGEJUMPFUZB; {ProgramflowcontrolledbyALUresult}

UWO1=1; { Degrees of membership}

UWO2=1;

lingu1= NBWO; { Linguistic value}

lingu2= NBWO;

JUMP FUZEND {Jump to label FUZEND}

NBWO NMWO PBWO PMWO PSWO ZWO NSWO 

WO5 WO4 WZ WO3 WO2 

1

0.5 

0

WO6 WO1 
"WO" (rad/s) 

UWO 

Figure 11.15 Membership function of speed command. NBWO: negative big; NMWO: negative

medium; NSWO: negative small; ZWO: zero; PBWO: positive big; PMWO: positive medium; PSWO:

positive small.

Table 11.3 Fuzzification operation constants of speed command.

WO1 WO2 WO3 WZ WO4 WO5 WO6

� 188 � 126 � 63 0 63 126 188
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FUZB:

AR=WOC-WO2;

IF GE JUMP FUZC;

UWO1=(WO2-WOC)/(WO2-WO1);

UWO2=( WOC-WO1)/(WO2-WO1)

lingu1= NBWO;

lingu2= NMWO;

JUMP FUZEND

FUZC:

.

.

.

FUZEND:

RTS; { Subroutine ends here }

Fuzzification Subroutine of Speed Error

Speed error ‘WE’ is the difference between rotor speed ‘WO’ and speed command ‘WOC’,

which can be expressed as:

WE ¼ WO�WOC

Table 11.4 Fuzzification operations of speed command.

Label Condition Degrees of membership Linguistic

value

FUZA WOC LT WO1 UWO1¼ 1 NBWO

UWO2¼ 1 NBWO

FUZB WOC GE WO1 AND WOC LT WO2 UWO1¼ (WO2-WOC)/(WO2-WO1) NBWO

UWO2¼ (WOC-WO1)/(WO2-WO1) NMWO

FUZC WOC GE WO2 AND WOC LT WO3 UWO1¼ (WO3-WOC)/(WO3-WO2) NMWO

UWO2¼ (WOC-WO2)/(WO3-WO2) NSWO

FUZD WOC GE WO3 AND WOC LT WZ UWO1¼ (WZ-WOC)/(WZ-WO3) NSWO

UWO2¼ (WOC-WO3)/(WZ-WO3) ZWO

FUZE WOC GE WZ AND WOC LT WO4 UWO1¼ (WO4-WOC)/(WO4-WZ) ZWO

UWO2¼ (WOC-WZ)/(WO4-WZ) PSWO

FUZF WOC GE WO4 AND WOC LT WO5 UWO1¼ (WO5-WOC)/(WO5-WO4) PSWO

UWO2¼ (WOC-WO4)/(WO5-WO4) PMWO

FUZG WOC GE WO5 AND WOC LT WO6 UWO1¼ (WO6-WOC)/(WO6-WO5) PMWO

UWO2¼ (WOC-WO5)/(WO6-WO5) PBWO

FUZH WOC GE WO6 UWO1¼ 1 PBWO

UWO2¼ 1 PBWO

WOC: Speed command; LT: Less than (ADSP-2100 assembler expression);GT: Greater than (ADSP-2100 assembler

expression); GE: Greater than or equal (ADSP-2100 assembler expression); /: divide (ADSP-2100 assembler

expression); -: subtraction (ADSP-2100 assembler expression).
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where WO is obtained from the output of the encoder program, ENCO, andWOC is the speed

set value.

The subroutine of fuzzification operation of speed error converts the crisp input values

of speed error Do to fuzzy sets. Table 11.5 defines the five constants of fuzzification

operation of speed error and the fuzzification operations of speed error are summarized in

Table 11.6.

Subroutine of Fuzzy Inference Operation

The subroutine of fuzzy inference operation implements the linguistic inference of

Equations (6.16) and (6.18), and the degree of membership calculation of Equations

(6.19) and (6.20). The details of the fuzzy inference operations are summarized in

Table 11.7.

Table 11.5 Constants of fuzzification operation of speed error.

E1 E2 E3 E4 E5

� 376 � 3 0 3 376

Table 11.6 Fuzzification operations of speed error.

Label Condition Degrees of membership Linguistic value

FUZI WE LT E1 UWO3¼ 1 NDWO

UWO4¼ 1 NDWO

FUZJ WE GE E1 AND WE LT E2 UWO3¼ (E3-WE)/(E3-E1) NDWO

UWO4¼ 0 ZDWO

FUZK WE GE E2 AND WE LT E3 UWO3¼ (E3-WE)/(E3-E1) NDWO

UWO4¼ (WE-E2)/(E3-E2) ZDWO

FUZD WE GE E3 AND WE LT E4 UWO3¼ (W4-WE)/(E4-E3) ZDWO

UWO4¼ (WE-E3)/(E5-E3) PDWO

FUZE WE GE E4 AND WE LT E5 UWO3¼ 0 ZWO

UWO4¼ (WE-E3)/(E5-E3) PDWO

FUZF WE GE E5 UWO3¼ 1 PDWO

UWO4¼ 1 PDWO

Table 11.7 Fuzzy inference operations.

Variable names Description

Inputs

UWO1, UWO2, UWO3, UWO4 Degrees of membership of speed command and speed error

Lingu1, lingu2, lingu3, lingu4, Linguistic values of speed command and speed error

Outputs

UC1, UC2 Crisp values of fuzzy linguistic

UD1, UD2 Degrees of membership
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Subroutine of Defuzzification Operation

The subroutine of defuzzification operation implements the defuzzification for outputs of

the fuzzy inference. The centroid method given by Equation (6.21) is used to implement the

defuzzification operation. The details of the defuzzification operations are summarized in

Table 11.8.

11.6.1.3 PI Current Magnitude Controller (CURRENTMC.DSP)

When the permissible magnitude of stator current of the induction motor is 2 A, proportional

and integral parameters of the PI current magnitude controller are designed, from Equations

(6.23)–(6.25), as Kp¼ 0.7 and KI¼ 0.014. The discrete time difference equations which

implement the PI controller are as follows:

Iðkþ 1Þ ¼ IðkÞþKI � eðkþ 1Þ ð11:11Þ

Ufkþ 1Þ ¼ Kp � eðkþ 1Þþ Iðkþ 1Þ ð11:12Þ

where: KI ¼ integral constant

I(kþ 1)¼ integral of error x integral constant

I(k)¼ previous integral of error x integral constant

e(kþ 1)¼ error for iteration kþ 1

Kp¼ proportional constant

U(kþ 1)¼ controller output

Equations (11.11) and (11.12) are implemented by a routine of PI currentmagnitude controller,

CURRENTMC.DSP.

11.6.1.4 Generate Stator Current Command (Subroutine SINCURRENT)

The slip frequency command WEC of the fuzzy controller output, the current magnitude

command U of the output of current magnitude PI controller, and the speed command WO

are converted into three stator current commands, IAC, IBC, and ICC by a subroutine

Table 11.8 Defuzzification operations.

Variable names Description

Inputs

UC1, UC2 Crisp values of fuzzy linguistic

UD1, UD2 Degrees of membership

Outputs

WEC Numerical value of slip frequency
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SINCURRENT in the main program MAIN.DSP. Algorithm of the subroutine SINCUR-

RENT is described as follows:

{initialize phase angles}

Wað0Þ ¼ 0;

Wbð0Þ ¼ 2p=3;

Wcð0Þ ¼ �2p=3;

{calculate supply frequency}

W com ¼ WOþWEC;

{increment phase angles}

Waðnþ 1Þ ¼ WaðnÞþW com� DT ;

where DT¼ 2� p� (1/10000); (PWM frequency¼ 10 kHz)

{calculate 3-phase current command}

IAC ¼ UsinðWaðnþ 1ÞÞ;

IBC ¼ UsinðWbðnþ 1ÞÞ;

ICC ¼ UsinðWcðnþ 1ÞÞ;

The sine function is implemented by calling a function ADMC_SIN stored in ADMC331

ROM.

11.6.1.5 Stator Current Controllers (STCPI.DSP)

The design of the current PI controller shown in Figure 6.31 has been described in Equation

(6.26)–(6.40). Because the feedback gains in the experimental system is different from the

simulation system in Chapter 6, the parameters of the current PI controller must be modified as

follows.

The open-loop transfer function, Equation (6.33), of the PI controller and the motor is

modified as:

Gopenloop ¼ GPI � K1 � Gmotor ¼ Kp � K1 � 1

sLss
ð11:13Þ

where K1 is all other gains in the systems.

Experimental Investigations 335



www.manaraa.com

If a constant K2 is introduced as follows,

K2 ¼ Kp � K1 � 1

sLs
ð11:14Þ

then, Gopenloop ¼ K2

s
.

Closing the feedback loop with unity gain results in the following closed-loop transfer

function:

Gclosedloop ¼ K2

sþK2

: ð11:15Þ

This is recognized as a single-pole low-pass filter with 3-dB corner frequency at:

F3dB ¼ K2

2p
: ð11:16Þ

Choosing a filter corner frequency (or a controller bandwidth) of 1 kHz results in:

K2 ¼ 2p� 103: ð11:17Þ

The feedback gain term K1 is made up of the following terms:

PWM Gain¼DC bus voltage 230V

Current sensor gain 0.825V/A

ADC gain 0.17041

Scaling 3.4566

Total 111.770

that is, K1 ¼ 111:770
From Equation (11.14):

Kp ¼ K2

K1

� sLs: ð11:18Þ

From Appendix H, the parameters of the experimental induction motor are: s¼ 0.208,

Ls¼ 0.3185 H and Rs¼ 14.6O. From Equation (11.18), the proportional constant is

Kp ¼ 2p� 103 � 0:208� 0:3185=111:770

or Kp ¼ 3:724
: ð11:19Þ

From Equation (6.23), the integral constant KI is

KI ¼ 3:724� 14:6

0:208� 0:3185
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or

KI ¼ 821: ð11:20Þ

11.6.1.6 Analog to Digital Converter (ADC331.DSP)

The file ADC331.DSP contains subroutines used to read analog voltages which represent the

three-phase stator currents and the DC bus voltage.

11.6.1.7 Divide Function (DIVIDE.DSP)

The file DIVIDE.DSP contains a function called Division which divides a 32-bit dividend by a

16-bit divisor, and returns a 16-bit quotient.

11.6.1.8 Floating Point Math Routines (FPMATH.DSP)

The routines in the file FPMATH.DSP implement floating point numbers in the program. In

the floating point format used here, each number is represented by two 16-bit words, one for

the mantissa in 1.15 format (i.e., 1 signed bit, 15 fractional bits), and the other for the

exponents in 16.0 format (i.e., 16-bit binary strings). The value of the floating point number is

given by:

Value ¼ Mantissa � 2Exponent: ð11:21Þ

Table 11.9 gives some representations of the floating point number for the speed error

between the speed command and actual speed.

11.6.1.9 Speed Setpoint Function (SPEEDSET.DSP)

This DSP program implements reading of a speed setpoint from a potentiometer on the

ADMC connector board to ADMC331 as the speed command of the controller. The program

reads the auxiliary ADC input channel and scales the resulting value so that analog input

voltages of 0.3–3.3V produced by the potentiometer result in speed setpoints of 0 to

188 rad/s.

Table 11.9 Floating point representation examples.

Speed error Mantissa (dec) Mantissa (hex) Exponent (dec) Exponent (hex)

� 188 � 0.734375 0xA1FF 8 0x0008

� 126 � 0.984375 0x81FF 7 0x0007

� 1.0 � 1.0 0x8000 0 0x0000

0.25 1.0 0x7FFF � 2 0xFFFE

126 0.984375 0x7E00 7 0x0007

188 0.734375 0x5E00 8 0x0008
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11.6.1.10 Capturing Signals to DSP Memory (CAPTURE.DSP)

The file CAPTURE.DSP contains routines used to aid in debugging the code and tuning

the fuzzy controller parameters. They provide a means to capture 100 successive values

(floating point number) for each of four variables, which is limited by the 1k 16-bit data

memory of the ADMC331. The data values can then be examined by displaying them with

Motion Control Debugger’s (MCD) plot memory function, or by dumping them to a file

using MCDs dump memory command. From a memory dump file, the data can be further

analyzed.

11.6.2 Program Debug

11.6.2.1 Debug for Program FUZZY.DSP

1. Disconnect the inverter PowIRtrain from the DSP ADMC331.

2. Open the control loop by disconnecting the encoder input terminal from the DSP and set

a static speed value in the program to replace the actual rotor speed.

3. Produce an executable program main.exe using the file BUILD.BAT.

4. Invoke the ‘Motion Control Debugger’ program on the host PC.

5. Download the main.exe program from the host PC to DSP.

6. Click the run button on the host PC.

7. Check the speed setpoint (speed command) by a digital multimeter.

8. Observe and analyze the speed error (input of the program FUZZY.DSP) and the slip

frequency (output of the program FUZZY.DSP) by reading the data memory of

ADMC331.

9. Modify the source code of assembly language and iteratively repeat steps (3) to (9) until

satisfactory data values are obtained.

The speed setpoint is read by the program SPEEDSET.DSP from a potentiometer on the

ADMC connector board to ADMC331 as a speed command of the controller. At debug

Step (7), the speed command value is written to DAC channel 1 and is examined by a digital

multimeter. The DAC converts digital values (12 bit fixed point data) of the speed command to

analog voltage values. For convenience of observation, the digital values are multiplied by 100

before they are converted to the analog voltage values. According to the DAC algorithm

(Table 11.2), the DAC output voltage can be calculated by:

Vout ¼ Hinput

32767
� 2:5þ 2:5ðVÞ ð11:22Þ

where 32 767 represents the hex number 0x7FFF,Hinput is the speed command� 100 (decimal

number), and Vout is the DAC output voltage.

Table 11.10 shows the analog voltage values of DSP output, which is observed on a digital

multimeter.

After the speed command is set and checked, the speed error (input of the program FUZZY.

DSP) and the slip frequency (output of the program FUZZY.DSP) are read from the data

memory (DM) of ADMC331 (DM address 0x3894). The speed error and slip frequency

are floating point numbers in the DSP control program, which has been captured to the
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data memory on ADMC331 by the program CAPTURE.DSP. Table 11.11 shows the slip

frequencies captured at various speed setpoints and speed errors during the acceleration and

steady-state stages.

After the desired slip frequencies have been obtained by the programFUZZY.DSP, the debug

for the fuzzy control program is complete.

11.6.2.2 Debug for Other Programs

The stator current control program STCPI.DSP has been tested alone by a demo program

delivered by Amirix Inc., while the program ENCO.DSP has been tested in experiment 2 and

a test result is shown in Figure 11.10. The debug method and procedure for other programs of

the experimental control program are similar to those in Experiment 2 in Section 11.5. After all

the programs have been debugged, the encoder is connected to the DSP ADMC331 for

performing a closed-loop control experiment.

11.6.3 Performance Tests

11.6.3.1 Performance Test 1

Speed set point¼ 175 (rad/s).

Seven-way signals (Va,Vb,Vc, ia, ib, ic,oo) are acquired to the data-acquisition PC at same time.

Sampling rate¼ 40 kHz.

Sampling time¼ 1.4 s.

The test procedure is similar to that of Experiment 2 in Section 11.5.

Table 11.10 Speed command observed on a digital multimeter.

Speed command (rad/s) 0 40 80 188

(fixed point) (0x0000) (0x0028) (0x0050) (0x00BC)

�100 before DAC 0 4000 8000 18800

(0x0000) (0x0FA0) (0x1F40) (0x4970)

Output value (V) 2.500 2.805 3.110 3.934

Observed value on multimeter (V) 2.50 2.80 3.10 3.90

Table 11.11 Speed error and the slip frequencies read from the DSP data memory.

Control stages Stop Acceleration Steady Acceleration Steady Acceleration Steady

Speed setpoint 0 40 40 80 80 188 188

(fixed point) (0x0000) (0x0028) (0x0028) (0x0050) (0x0050) (0x00BC) (0x00BC)

Speed error 0 40 0 80 0 188 0

(floating point)

Captured 0.026 18.228 0.730 18.317 2.272 18.198 5.678

Slip frequency
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Test Results

The induction motor is started by the fuzzy/PI controller from standstill to 175 rad/s.

During the time interval 0 s� 0.14 s, the 3-phase stator voltage, current, and speed

response are acquired by the PCL818HG card to the data-acquisition PC. Figure 11.16

shows the phase-A stator voltage estimated by the VDC_HANDLING subroutine and

modified by Equation (11.10), phase-A stator current acquired from the current sensor

board 3I411A, and rotor speed response acquired from the output of DAC on the ADMC

connector board. In Figure 11.16, it is demonstrated that the stator current magnitude is

maintained at about 2 A in the acceleration stage, which is a distinct characteristic of the

two-stage fuzzy/PI controller.

The 3-phase stator voltage, current, and speed response in the acceleration stage are shown in

Figures 11.17–11.19 respectively.

Figure 11.18 shows that 3-phase stator current magnitudes aremaintained at about 2 A in the

acceleration stage.

Figure 11.19 shows the rotor speed response of the induction motor with the fuzzy/PI

controller, the signal being acquired from the output of DAC on the ADMC Connector

Board.
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Figure 11.16 Phase-A stator voltage, phase-A stator current, and rotor speed response. (Reproduced by

permission of K.L. Shi, T.F. Chan, Y.K.Wong and S.L. Ho, “A novel hybrid fuzzy/PI two-stage controller

for an induction motor drive,” IEEE International Electric Machines and Drives Conference (IEMDC

2001), pp. 415–421, June 17–20, 2001, Cambridge, MA, U.S.A. � 2001 IEEE.)
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Figure 11.17 Estimated 3-phase voltages applied to the induction motor.
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Figure 11.18 Three-phase stator currents in the acceleration stage.
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11.6.3.2 Performance Test 2

Speed set point¼ 120 rad/s.

Seven-way signals (Va,Vb,Vc, ia, ib, ic,oo) are captured to the data-acquisition PC at same time.

Sampling rate¼ 40 kHz.

Sampling time¼ 1.4 s.

The test procedure is similar to that of Experiment 2 in Section 11.5.

Test Results

The induction motor is started by the fuzzy/PI controller from standstill to 120 rad/s.

Figure 11.20 shows the 3-phase stator voltage, current, and speed response acquired by the

PCL818HG card to the data-acquisition PC.
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Figure 11.19 Rotor speed response in the acceleration stage.
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Figure 11.20 Phase-A stator voltage, phase-A stator current, and rotor speed response.
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The variations of the 3-phase stator voltages and currents in the acceleration stage are shown

in Figure 11.21, while the rotor speed response in the acceleration stage is shown in

Figure 11.22.

When real-time data are acquired to the PC memory with the DMAmethod, the data size is

limited to 32 000 by the actual memory assigned by the PC hardware manager. Hence, to

observe and record the performance of the fuzzy/PI controlled drive over a longer period,

a powerful digital scope is required.

Experiment 3 has basically verified the feasibility of the Fuzzy/PI two-stage controller

proposed inChapter 5. Better performance, however,will necessitate further simulation studies

for improving and tuning the Fuzzy/PI control algorithm, for example, by usingmore advanced

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
-300

-200

-100

0

100

200

300

       Time (s) 

P
ha

se
 A

 v
ol

ta
ge

 (
V

) 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
-300

-200

-100

0

100

200

300

     Time (s) 

P
ha

se
 B

 v
ol

ta
ge

 (
V

) 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
-300

-200

-100

0

100

200

300

     Time (s) 

P
ha

se
 C

 v
ol

ta
ge

 (
V

) 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
-4

-2

0

2

4

      Time (s) 

P
ha

se
 A

 c
ur

re
nt

 (
A

) 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
-4

-2

0

2

4

P
ha

se
 B

 c
ur

re
nt

 (
A

) 

Time (second) 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
-4

-2

0

2

4

Time (second) 

P
ha

se
 C

 c
ur

re
nt

 (
A

) 

Figure 11.21 Three-phase stator voltages and currents in the acceleration stage.
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methods (such as ANN-Fuzzy or GA-Fuzzy) to optimize the membership functions instead of

the classical fuzzy method.

11.7 Experiment 4: Speed Estimation Using a GA-Optimized
Extended Kalman Filter

This experiment is designed to verify the efficacy of the real-coded genetic algorithm for

optimizing the extended Kalman filter which has been proposed and simulated in Chapter 7.

Figure 11.23 shows the block diagram of the experimental system of the GA-optimized

extended Kalman filter for rotor speed estimation.
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Figure 11.22 Rotor speed response in the acceleration stage.
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Figure 11.23 Block diagram of experimental EKF drive system.
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11.7.1 Program Design

The GA-EKF experimental software includes a DSP software to drive an induction motor

using the Field Oriented Control (FOC) technique, a PC Cþþ software to acquire actual

signals of 3-phase stator voltages, currents, and encoder, and a MATLAB� software to

optimize EKF by using GA and EKF speed estimation. The basic principle of the FOC

technique is to control the torque-producing and flux-producing components of the motor

current independently of each another. The FOC algorithm and computer simulation have been

described in Section 7.7 of Chapter 7. The Cþþ data-acquisition software has been designed

in Section 11.5, and the MATLAB� GA software has been designed in Chapter 7. The

MATLAB�EKF program is given in Appendix F. Following is the list of program units and the

functions that they perform:

File Name Description

ACIM.DSP Induction machine controller main program

ADC331.DSP, ADC331.H ADC routines

CAPTURE.DSP, CAPTURE.H Debugging functions for capturing variables to memory

CNTRL.DSP, CNTRL.H Speed, flux, Iqs, and Ids PI controllers

CONST331.H ADMC331-related constants

DAC.DSP, DAC.H Debugging functions for writing to DAC on ADMC

connector board

DIVIDE.DSP, DIVIDE.H Divide function

FLUX.H Field oriented control constants

FPMATH.DSP, FPMATH.H Floating point math routines

IR_INIT.DSP, IR_INIT.H Initialization of IR PowIRtrain module

MATH_32B.DSP, MATH_32B.H 32 bit math routines

MODEL.DSP, MODEL.H Flux estimation

PWM331.DSP, PWM331.H PWM functions

ROMUTIL.H ROM utility definitions

ENCO.DSP, ENCO.H Encoder functions

VECT_TRA.DSP, VECT_TRA.H Vector transformation functions

build.bat: Batch file to build the DSP source code into an executable

file main.exe which can be downloaded and run on the DSP.

ACQUIRE.C, ACQUIRE.H: Cþþ source codes for acquiring signals to PC

GA.M MATLAB� program to optimize EKF by using GA

EKF.M MATLAB� program to implement EKF algorithm

11.7.2 GA-EKF Experimental Method

The GA-EKF experiment is divided into the training phase and the verification phase. In the

training phase, three-phase voltage and current are acquired as training samples from the

experimental system and the actual rotor speed is acquired from the encoder as the target

function. After the matricesG, Q, and R have been obtained off-line using the real-coded GA,

the performance of the GA-EKF is examined in the verification phase by acquiring new data

samples. Figure 11.24 shows the GA training phase procedure and Figure 11.25 shows the

verification phase procedure.
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11.7.3 GA-EKF Experiments

The hardware system for the experimental investigations has been described in Figure 11.1 and

the following parameters have been chosen for data acquisition via the PCL818HG card:

Sampling rate¼ 20 kHz for scanning 7-way signals (Va, Vb, Vc, ia, ib, ic, Encoder) Sampling

rate of each way signal¼ 2.857 kHz (¼20/7 kHz)

Sampling time¼ 1.4 s

GA

Loading FOC program to DSP ADMC331 and running it 

Acquiring Va, Vb, Vc, ia, ib, ic, ωo from sensors to PC  

[Va, Vb, Vc, ia, ib, ic]

EKF speed estimation on PC 

Is optimization 
criterion met? 

Generate initial population of 
noise matrices for EKF 

ωo
Reproduction 

Recombination 

Mutation 

Output the best 
G, Q, R, to EKF 

 ωo

no

yes

Figure 11.24 Flowchart of GA-EKF program for the training phase. (Reproduced by permission of

K.L. Shi, T.F. Chan, Y.K. Wong and S.L. Ho, “Speed estimation of an induction motor drive using an

optimized extended Kalman filter,” IEEE Transactions on Industrial Electronics, 49(1), 2002:

124–133. � 2002 IEEE.)

Rerunning program on DSP ADMC331 with setting ωo*

Reacquiring Va, Vb, Vc, ia, ib, ic, ωo from sensors 

EKF with GA optimized noise matrices 

Comparing estimated speed with actual speed ωo

ωo ωo

Figure 11.25 GA-EKF speed estimation procedure in the verification phase.
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Total sample number¼ 28 000

Sample number of each signal¼ 4000

11.7.3.1 GA EKF in the Training Phase

Figure 11.26 shows the acquired phase voltage and phase current when the induction motor is

run up from standstill to 105 rad/s.

Figure 11.27 shows the actual speed and the speed estimated using EKF with matrices

G¼Q¼Diag[10� 3, 10� 3, 10� 3, 10� 3, 10� 2] and R¼Diag[10� 3, 10� 3]. In this case, the

mean squared error of the estimated speed is 48.1632.

The real-coded GA used to optimize the matricesG,Q, and R of the EKF has been described

inChapter 9. In the training stage, the real-codedGAparameters for the EKF experiment are set

as follows:

1. Initial population size: 100

2. Maximum number of generations: 20
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Figure 11.26 Phase voltage and phase current waveforms of the induction motor when run up to

105 rad/s. (Reproduced by permission of K.L. Shi, T.F. Chan, Y.K.Wong and S.L. Ho, “Speed estimation

of an inductionmotor drive using an optimized extendedKalman filter,” IEEE Transactions on Industrial

Electronics, 49(1), 2002: 124–133. � 2002 IEEE.)
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3. Probability of crossover: 0.8

4. Mutation probability: 0.01

5. Initial range of real-coded strings: [0.01; 5].

6. Performance measure: the mean squared error between the estimated speed and the actual

rotor speed.

Table 11.12 shows the convergence process in EKF training. The GA optimization method has

improved the EKF performance by decreasing the mean squared error of estimated speed from

48.1632 to 1.2980. The optimized matrices are found to be:G¼Diag[0.1264, 0.1306, 0.1847,

0.1945, 1.5603], Q¼Diag[0.0648, 0.0993, 0.0816, 0.0963, 1.5000], and R¼Diag[0.0101,
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Figure 11.27 Actual speed of rotor and speed estimated using EKF.

Table 11.12 Iteration process of the off-line GA.

Generations E ¼ 1

n

Xn

i¼1

ðsi � eiÞ2 Generations E ¼ 1

n

Xn

i¼1

ðsi � eiÞ2

0 12.6931

1 4.0216 11 1.6493

2 4.3045 12 1.6320

3 3.1341 13 1.5234

4 3.0235 14 1.6019

5 2.8401 15 1.4820

6 2.5294 16 1.4397

7 2.1983 17 1.3589

8 2.2631 18 1.3740

9 1.9578 19 1.3138

10 1.8653 20 1.2980

s: actual rotor speed; e: estimated speed; n: number of data samples (¼ 4000);E: mean squared error of estimated speed.

(Reproduced by permission of K.L. Shi, T.F. Chan, Y.K. Wong and S.L. Ho, “Speed estimation of an induction motor

drive using an optimized extendedKalman filter,” IEEE Transactions on Industrial Electronics, 49(1), 2002: 124–133.

� 2002 IEEE.)
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0.0104]. It is apparent that the noise covariance and weight matrices required depend on the

motor whose speed is to be estimated.

Figure 11.28 shows the actual speed and the estimated speed by using the optimized EKF.

The mean squared error of the estimated speed is 1.2980.

11.7.3.2 GA EKF in Verification Phase

In the verification phase, the induction motor is run up from standstill to 188 rad/s by the

same FOC program. Data samples are acquired from the DSP drive system to the PC and

the GA-EKF program is run again to check the accuracy of the speed estimation.

Figure 11.29 shows the phase voltage, phase current, and estimated speed of the motor. The

mean squared error of the estimated speed is found to be 1.7387, which is very close to that

obtained in the training phase.

The experimental results demonstrate that the off-line GA method is efficacious for

optimizing an EKF speed estimator. In order to obtain satisfactory covariance and weight

matrices by the off-line GA, a short sampling periodmust be chosen for actual data acquisition.

In this experiment, DMA method is used to implement high-speed data acquisition for the

7-way signals (Va, Vb, Vc, ia, ib, ic, and o). At a sampling rate of 20 kHz, which corresponds

to a sampling time interval of 0.00035s (¼7/20 000), very satisfactory GA training and EKF

verification results have been obtained.

11.7.4 Limitations of GA-EKF

Because the real-coded genetic algorithm begins from a randomly generated initial

population of the long real-coded strings, the distribution of values in the initial population

may affect the convergence process of the algorithm. The optimization process may need to

be repeated several times before the global optimum is obtained. In the simulation studies
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Figure 11.28 Actual speed of rotor and speed estimated using GA-EKF. (Reproduced by permission of

K.L. Shi, T.F. Chan, Y.K. Wong and S.L. Ho, “Speed estimation of an induction motor drive using an

optimized extended Kalman filter,” IEEE Transactions on Industrial Electronics, 49(1), 2002: 124–133.

� 2002 IEEE.)
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and the experimental studies, it is also found that an improper initial range of the covariance

matrices may result in extremely long time for GA iterations or even GA optimization failure.

The initial range is different for various induction motor types, for example, the initial range is

[0.0001; 0.1] for the 7.5 kW motor in Chapter 7 and is [0.01; 5] for the 147W motor.
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Figure 11.29 Phase voltage, phase current and speed estimated usingGA-EKFwhen themotor is run up

to 188 rad/s. (Reproduced by permission of K.L. Shi, T.F. Chan, Y.K. Wong and S.L. Ho, “Speed

estimation of an inductionmotor drive using an optimized extendedKalman filter,” IEEETransactions on

Industrial Electronics, 49(1), 2002: 124–133. � 2002 IEEE.)
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As an example, consider the casewhere the initial range of EKF covariance matrices is set as

[0.0001; 0.1] for the experimental 147-W motor. The GA iteration process is shown in

Table 11.13.

At the 20th iteration step, themean squared error of the estimated speed is still at a largevalue

of 29.8949 and the corresponding EKF matrices are: G¼Diag[0.0326, 0.0425,

0.02764, 0.0139, 0.0832], Q¼Diag[0.0174, 0.0268, 0.0460, 0.0533, 0.09524], and R¼
Diag[0.0230, 0.0147]. Figure 11.30 shows the actual speed and the speed estimated by the

sub-optimal EKF.

Table 11.13 Iteration process of a GA failure case.

Generations E ¼ 1

n

Xn

i¼1

ðsi � eiÞ2 Generations E ¼ 1

n

Xn

i¼1

ðsi � eiÞ2

0 38.2961

1 31.7557 11 29.9377

2 29.9381 12 29.8982

3 30.2317 13 29.9147

4 30.0430 14 29.9344

5 29.9381 15 29.8982

6 30.0021 16 29.8982

7 29.9376 17 29.8819

8 29.9175 18 29.8392

9 29.8982 19 29.8425

10 29.9378 20 29.8949

s: actual rotor speed; e: estimated speed; n: number of data samples (¼ 4000); E: mean squared error of estimated

speed.
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Figure 11.30 Actual speed and the estimated speed using the sub-optimal EKF.
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11.8 DSP Programming Examples

TMS320F28335 processor (Texas Instruments Inc., 2009a) is employed for the DSP

programming examples.Working in association withMATLAB� software, TMS320F28335

is suitable for implementing an intelligent inductionmotor control systemwith the following

features:

1. Up to 150 MIPS (million instructions per second) or 6.67-ns instruction cycle time, 32-bit

floating-point CPU, up to 18 PWM outputs, 6 event capture inputs, and 16 channels 12-bit

ADC (analog-to-digital converter) with 80-ns conversion rate.

2. Standard IEEE 1149.1 JTAG (Joint Test Action Group) interface is implemented on

TMS320F28335 processor. With JTAG-based emulator hardware, the processor may be

connected to a host PC through a USB (Universal Serial Bus) interface.

3. Supports RTDX (Real Time Data exchange) technique. RTDX enables real-time,

asynchronous exchange of data between the target DSP and the host PC, without

stopping the tasks in the target DSP. When a motor control program is running in the

DSP, another complex intelligent control program, such as ANN or GA, may be run

simultaneously on the host PC to support the motor control program running in the

target DSP.

4. Supports Code Composer Studio (CCS) IDE (integrated development environment) and

Cþþ compiler/assembler/linker, DSP/BIOS, and digital motor control software.

In this section, four examples are presented to demonstrate basic DSP programming of an

induction motor control system. The four examples are (1) generation of 3-phase sinusoidal

PWM pulses for driving a 3-phase inverter; (2) RTDX for exchange of real-time data between

the DSP and MATLAB� software; (3) acquisition of analog signals to the DSP by using an

ADC; (4) capturing rotor encoder pulses to DSP by CAP programming.

The hardware for the four programming examples includes a host PC, DSP experiment

board, and an oscilloscope. The DSP experiment board may be an eZdspF28335 develop-

ment board (delivered by Spectrum Digital, Inc.) or a TMS320F28335 experimenter kit

(delivered by Texas Instruments Inc.). The two boards have an on board JTAG connector

that provides interface to a PC via a USB connection. The oscilloscope is used for

observing the output waveforms of the DSP board. The hardware configuration is shown in

Figure 11.31.
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Figure 11.31 Hardware configuration of DSP programming examples.
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In the TMS320F28335 target DSP, the three peripherals (PWM, CAP, ADC) and JTAG port

implement the four functions.

1. The PWM ports output the six PWM pulses which control the inverter that feeds the

induction motor.

2. Stator currents and voltage of inverter DC supply are acquired by the ADC ports to the DSP.

With the acquired voltage of inverter DC supply and the PWM signals produced in the DSP,

output voltages of the inverter may be obtained by their product.

3. Pulses yielded by a rotor speed encoder may be captured by the CAP port.

4. Through the on-board JTAG hardware interface, values of stator voltage, stator current, and

rotor speed may be transferred to the host PC for real-time analysis and calculation.

Complex intelligent algorithms that cannot run in the present-day DSP, such as ANN and

GA, may be asynchronously run on the host PC byMATLAB� software with data acquired

in real-time. The optimized parameters obtained by the intelligent algorithm in the host PC

may be instantly transferred to the DSP to update the running program.

The software for the four programming examples include CCStudio_v3.3 with bios_5_33_06

software package (Texas Instruments Inc., 2009b) andMATLAB� 2008b with Embedded IDE

LinkCC software package (TheMathWorks, Inc. 2008). The software configuration in the host

PC and the application program loaded in the target DSP are shown in Figure 11.32.

In the software configuration, CCS IDE includes integrated Edit/Debug GUI (graphical user

interface), code generation tools, DSP/BIOS, and RTDX host library. DSP/BIOS kernel is

a real-time, multi-tasking software, also called a real-time DSP operating system (Texas

Instruments Inc., 2009b). DSP/BIOS provide standardized API (Application Program Inter-

face) functions for even the most sophisticated DSP applications. RTDX software consists of

the target library and the host library. A small RTDX software library runs on the target DSP.

This library transfers the required data to or from the host PC in real-time through a JTAG

interface when the DSP application is running. On the host PC, the RTDX host library operates

in conjunction with MATLAB� to obtain the target data or to send data to the target DSP

application through the JTAG interface. ‘Embedded IDE Link CC’ software package of

MATLAB�may be embedded to theCodeComposer Studio software.UsingRTDX technique,

bi-directional real-time data exchange between MATLAB� software and the TMS320F28335

processor program can be easily implemented.

Host PC Target DSP 
JTAG 
interface 

1) CCS IDE
Edit/Debug GUI  
Code generation tools 
DSP/BIOS API 
RTDX host library 
2) MATLAB®

Embedded IDE Link CC 

1) Application program 

2) RTDX Target Library 

Figure 11.32 Software configuration of the host PC and target DSP.
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To verify that the board has been connected to the host PC, start MATLAB� and enter

‘ccsboardinfo’ in the MATLAB� command line.

If the development board eZdspF28335 is connected to the host PC, the following

information will be shown in the MATLAB� window.

>> ccsboardinfo

Board Board Proc Processor Processor

Num Name Num Name Type

--- -------------------------------- --- ----------------

0 F28335_eZdsp 0 cpu_0

If the TMS320F28335 experimenter kit is connected to the host PC, the following information

will be shown in the MATLAB� window.

>> ccsboardinfo

Board Board Proc Processor Processor

Num Name Num Name Type

--- -------------------------------- --- ----------------

0 F28335 XDS100 0 TMS320C2800_0

USB Emulator

11.8.1 Generation of 3-Phase Sinusoidal PWM

This example demonstrates programming 3-phase sinusoidal PWM for an inverter-fed

induction motor in a TMS320F28335 processor (Texas Instruments Inc., 2009c). The 3-phase

PWMoperates at a synchronization frequency of 1 kHz. The three-phase PWMwaveforms are

produced by three events, namely PWM1, PWM2 and PWM3. PWM1 works as a master and

a PWM1 event is started by the processor timer. Next, PWM1 triggers a hardware interrupt to

start event PWM2 which then works as a slave. Finally, PWM2 triggers a hardware interrupt

to start event PWM3 which then works as a slave.

Step 1Connect the TMS320F28335 experiment board to the PC via USB interface. Start Code

Composer Studio (CCS) and create a new project named as ‘F28335_example_PWM.pjt’ by

selecting the ‘New’ item from the ‘Project’ menu on CCS.

Step 2 Write a main program ‘Main_PWM.c’ and add it to the project. The main program is

listed below:

#include ’DSP2833x_Device.h’ // Peripheral address definitions

#include ’F28335_example_PWM.h’ // Main include file

void main(void)

{

InitSysCtrl(); // Initialize the CPU

InitPieCtrl(); // Initialize and enable the PIE

(Peripheral Interrupt Expansion)

InitGpio(); / Initialize the shared GPIO pins

InitEPwm(); // Initialize the 3-phase PWM

}
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Step 3 Write the four initialization functions and add them to the project.

‘InitSysCtrl()’: Configure the registers of clocking and system control (Texas Instruments

Inc., 2009d). The system clock is set at 75MHzwith a register script SysCtrlRegs.PLLSTS.bit.

DIVSEL¼ 0x2.

‘InitGpio()’: Configure the GPIO (General-Purpose Input/Output) ports as PWM ports with

following scripts (Texas Instruments Inc., 2009d).

GpioCtrlRegs.GPAMUX1.bit.GPIO0 = 1; // Set GPIO0 port as EPWM1A port

GpioCtrlRegs.GPAMUX1.bit.GPIO1 = 1; // Set GPIO1 port as EPWM1B port

GpioCtrlRegs.GPAMUX1.bit.GPIO2 = 1; // Set GPIO2 port as EPWM2A port

GpioCtrlRegs.GPAMUX1.bit.GPIO3 = 1; // Set GPIO3 port as EPWM2B port

GpioCtrlRegs.GPAMUX1.bit.GPIO4 = 1; // Set GPIO4 port as EPWM3A port

GpioCtrlRegs.GPAMUX1.bit.GPIO5 = 1; // Set GPIO5 port as EPWM3B port

‘InitEPwm()’: This example implements symmetrical PWMwith PWM1 configured as a master,

PWM2and PWM3configured as slaves. There are seven control registermodules in the enhanced

PWM (EPWM) system to implement various PWM control techniques as shown below:

. Time-Base Module (TBCTL registers)

. Counter Compare Module (CMPCL registers)

. Action Qualifier Module (AQCTLA/B registers)

. Dead-Band Generator Module (DBCTL registers)

. PWM Chopper (PC) Module (PCCTL registers)

. Trip Zone Module (TZCTL registers)

. Event Trigger Module (ETSEL registers)

The configuration in theEPWMregisters has a long script (please refer to the book companion

website). To understand the full technical details, readers should consult the Enhanced Pulse

Width Modulator (ePWM) Module Reference Guide (Texas Instruments Inc., 2009c).

After completing the configuration of EPWM registers, the following scripts in ‘InitEPwm()’

are necessary to make PWM interrupts work.

/* Enable CPU INT3 which is connected to EPWM1-3 INT */

IER |= M_INT3;

/* Enable EPWM INTn in the PIE: Group 3 interrupts 1-3 */

PieCtrlRegs.PIEIER3.bit.INTx1 = 1;

PieCtrlRegs.PIEIER3.bit.INTx2 = 1;

PieCtrlRegs.PIEIER3.bit.INTx3 = 1;

/* Clear three PWM interrupt flags */

EPwm1Regs.ETCLR.bit.INT = 1;

EPwm2Regs.ETCLR.bit.INT = 1;

EPwm3Regs.ETCLR.bit.INT = 1;

Step 4Write a header file ‘F28335_example_PWM.h’ including the following scripts and add

it to the project.

// Set half period of the PWM and initial duty cycle

#define PWM_HALF_PERIOD 37500 // 1 kHz PWM at 75MHz system clock

#define PWM_DUTY_CYCLE 18750 //50% duty cycle
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Step 5 Create a new DSP/BIOS configuration ‘f28335_example_PWM.tcf’ by selecting ‘New’

and ‘DSP/BIOS configuration’ from the ‘File’ menu in CCS and add the new DSP/BIOS to the

project. PWM hardware interrupts may be set by assigning the three interrupt service routines,

‘_EPWM1_INT_ISR’, ‘_EPWM2_INT_ISR’, and ‘_EPWM3_INT_ISR’ to the three PIE

(Peripheral InterruptExpansion) interrupt items ‘PIE_INT3_1’ ‘PIE_INT3_2’, and ‘PIE_INT3_3’,

respectively. The assignment is done in the ‘PIE INTERRUPTS’ folder of the DSP/BIOS.

Step 6 Write PWM interrupt service routines (ISR) to adjust the duty cycle according to the

sinusoidal reference function as follows and add them to the project.

#include ’DSP2833x_Device.h’ // Peripheral address definitions

#include ’F28335_example_PWM.h’ // Main include file

#include ’math.h’ // Include sine function

double A1=0.0, A2=0.0, A3=0.0, B;

Uint32 C;

double TWO_PI_div20 = 0.3141592653589795; // = 2p/20

void EPWM1_INT_ISR(void) // PIE3.1 @ 0x000D60 EPWM1_INT (EPWM1)

{

PieCtrlRegs.PIEACK.all = PIEACK_GROUP3; // Must acknowledge the PIE group

A1=A1+TWO_PI_div20;

if (A1 >= TWO_PI)

A1=0.0;

B = sin(A1); // Call a sine function

B=18750-0.8* B*18750;

C=(Uint32)B; //Converterto32bitUintdata

EPwm1Regs.CMPA.half.CMPA=C; // Update compare register

EPwm1Regs.ETCLR.bit.INT=1; //ClearPWM1interruptflag

}

void EPWM2_INT_ISR(void) // PIE3.2 @ 0x000D62 EPWM2_INT (EPWM2)

{

PieCtrlRegs.PIEACK.all=PIEACK_GROUP3; //MustacknowledgethePIEgroup

A2=A2+TWO_PI_div20;

if (A2 >= TWO_PI)

A2=0.0;

B = sin(A2-TWO_PI/3); // Call a sine function with phase as -2p/3
B=18750-0.8* B*18750;

C= (Uint32) B; // Converter to 32 bit Uint data

EPwm2Regs.CMPA.half.CMPA=C; // Update compare register

EPwm2Regs.ETCLR.bit.INT = 1; // Clear PWM2 interrupt flag

}

void EPWM3_INT_ISR(void) // PIE3.3 @ 0x000D64 EPWM3_INT (EPWM3)

{

PieCtrlRegs.PIEACK.all = PIEACK_GROUP3; // Must acknowledge the PIE group

A3=A3+TWO_PI_div20;

if (A3 >= TWO_PI)

A3=0.0;

B = sin(A3+TWO_PI/3); // Call a sine function with phase as 2p/3
B=18750-0.8* B*18750;

C=(Uint32) B; // Converter to 32 bit Uint data

EPwm3Regs.CMPA.half.CMPA=C; // Update compare register

EPwm3Regs.ETCLR.bit.INT = 1; // Clear PWM3 interrupt flag

}
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Note: The execution time of the sin function is 37 instruction cycles (Texas Instruments

Inc., 2008).

Step 7By selecting ‘RebuildAll’ in the ‘Project’menu of theCCSwindow, the executable code

is generated. The filename of the executable code may be set in the ‘Build Options’ window in

the ‘Project’ menu. In this example, it is named as ‘F28335_example_PWM.out’.

Step 8 Connect the Code Composer Studio (CCS) to the TMS320F28335 processor by

selecting the item ‘Connect’ from the CCS ‘Debug’ menu.

Step 9 Reset the CPU and load the executable code ‘F28335_example_PWM.out’ into the

processor by selecting the item ‘Load Program’ from the CCS ‘File’ menu.

Step 10 Connect pins GPIO0 (PWM1A) and GPIO1 (PWM1B) in the processor to the

oscilloscope channel 1 and channel 2, and click key ‘F5’ to start the program in the processor.

Waveforms of PWM1A and PWM1B can be observed on the oscilloscope as shown in

Figure 11.33.

Click key ‘Shift-F5’ to halt the executable code. Connect pins of the processor, GPIO0

(PWM1A), GPIO2 (PWM2A), and GPIO4 (PWM3A) to the oscilloscope channels 1, 2, and

3, respectively. Click key ‘F5’ to start the program again. The three-phase sinusoidal PWM

output PWM1A, PWM2A and PWM3A can be observed on the oscilloscope as shown in

Figure 11.34.

Connect a low-pass filter consisting of a 1-kO resistance and a 4.7-mF to the pin GPIO0

(PWM1) of the processor and connect the output of the filter to channel 1 of the oscilloscope.

The output waveform shown in Figure 11.35 may be observed.

Figure 11.33 Waveforms of PWM1A and PWM1B displayed on the oscilloscope.
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Figure 11.34 Waveforms of PWM1A, PWM2A, and PWM3A in the oscilloscope.

Figure 11.35 Filter output waveform from PWM1A.
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11.8.2 RTDX Programming

This example demonstratesRTDXprogramming to exchange data between theTMS320F28335

processor andMATLAB�. In this example, the application program in theprocessor is started by

aMATLAB� script and an array is sent to the processor fromMATLAB�. In the main program

in the processor, a software interrupt is posted to call an interrupt service routine for receiving the

array fromMATLAB�. After the processor has received the array, the value of every element in

the array is increased by 1 and a second software interrupt is posted to call an interrupt service

routine for sending the new array to MATLAB� from the processor.

Step 1 Create a new project ‘RTDX.pjt’.

Step 2 Write a main program ‘swi.c’ as listed below and add it to the project.

#include <rtdx.h> // RTDX header file

#include ‘swicfg.h’ // Header file created by BIOS

RTDX_CreateInputChannel(ichan); // Create a input channel

RTDX_CreateOutputChannel(ochan); // Create a output channel

double A[64];

void main(Int argc, Char *argv[])
{

RTDX_enableInput(&ichan); // Enable the input channel

RTDX_enableOutput(&ochan); // Enable the output channel

SWI_post(&SWI0); // Post software interrupt SWI0

}

Step 3 Create a new DSP/BIOS configuration ‘swi.tcf’ and add it to the project. Two software

interrupts are set by adding two software interrupt items ‘SWI0’ and ‘SWI1’ into the DSP/

BIOS. The two software interrupts are assigned to trigger the interrupt service routines

‘_swiFxn0’ and ‘_swiFxn1’. By entering ‘_swiFxn0’ and ‘_swiFxn1’ into the items ‘SWI0’

and ‘SWI1’, respectively, the configuration is completed.

Step 4 Write the interrupt service routines and add them to the project.

void swiFxn0(void) // Interrupt service routine called by software

interrupt SWI0

{

RTDX_read( &ichan, &A, sizeof(A) ); // Read data from MATLAB

RTDX_disableInput(&ichan); // Disable the input channel

SWI_post(&SWI1); // Post software interrupt SWI1

}

voidswiFxn1(void) //Interruptserviceroutinecalledbysoftware

interrupt SWI1

{

int i;

for (i = 0; i < 64; i + +)

A[i] = A[i] + 1; // Add 1 to every element of the array

RTDX_write(&ochan,&A,sizeof(A)); //WritedatatoMATLAB

RTDX_disableOutput(&ochan); // Disable the output channel

}
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Step 5Create an executable code ‘RDTX.out’. The filename of the executable code may be set

in ‘Build Options’ in CCS.

Step 6 Connect the Code Composer Studio (CCS) to the TMS320F28335 processor by

selecting the item ‘Connect’ from the CCS ‘Debug’ menu.

Step 7 Reset the CPU, and load the executable code ‘RDTX.out’ into the processor.

Step 8Enable RTDX in CCS by opening the ‘RTDXControl’ window from the ‘RTDX’ folder

in the ‘Tools’menu on theCCS, then selecting the ‘RTDXEnable’ box from the opened ‘RTDX

Control’ window.

Step 9 Start MATLAB� and write a program ‘Example_RTDX.m’ as follows:

function void = Example_RTDX()

clear(’all’)

A = 0:0.1:6.3;

Send_array = sin(A); % Create a array of sine function

% Connect MATLAB to CCS
cc = ticcs; % Get a handle to Code Composer Studio (CCS)

rx = cc.rtdx; % created an alias rx to the RTDX portion of cc

open(rx,’ichan’,’w’) % Open a channel for write access

enable(rx,’ichan’) % Enable write access

open(rx,’ochan’,’r’) % Open a channel for read access

enable(rx,’ochan’) % Enable read access

flush(rx,’ochan’); % Flush data from ochan channels

% Start processor application and write data from MATLAB to processor
cc.run(’run’); % Start the processor program

writemsg(rx,’ichan’,Send_array); % Write data to the processor

% Read the data from processor to MATLAB
% Determine the number of messages

number_msgs = msgcount(rx,’ochan’)

if ( number_msgs >=1)

Read_array = cc.rtdx.readmsg(’ochan’,’double’, number_msgs);

end % Read data to MATLAB

halt(cc); % Halt the processor

disable(rx,’all’)

close all;

% Plot waveforms
plot(Send_array); % Plot the write data

hold on;

plot(Read_array); % Plot the read data

axis([1 64 -1.5 2.5]);

end

Step 10Run the program ‘Example_RTDX.m’ inMATLAB� platform. The results are shown

in Figure 11.36.
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11.8.3 ADC Programming

This example demonstrates ADC (analog-to-digital converter) programming to acquire analog

signals from anADC port of the TMS320F28335 processor and to transfer them toMATLAB�

by RTDX technique. The ADC module in TMS320F28335 has following features (Texas

Instruments Inc., 2007).

. 12-bit ADC core with built-in sample-and-hold

. Analog input range: 0.0–3.0 V

. Fast conversion rate: Up to 80 ns at 25-MHz ADC clock.

. 16 ADC channels

. Sixteen result registers to store conversion values and the digital value of the input analog

voltage is derived by: Digital Value¼ 4096�(Input Analog Voltage)/3.

In this example, the application program in the processor is started by a MATLAB� script.

The ADC in the processor is triggered by PWM4 timer at a sampling rate of 2.5 kHz. From

the ‘ADCINA0’ port of the processor, analog voltage is converted to digital value. After the

conversion is completed, a hardware interrupt is triggered to call an interrupt service routine

‘ADCINT_ISR’. In the routine ‘ADCINT_ISR’, a software interrupt is posted to call an

interrupt service routine ‘AdcSwi’. In the routine ‘AdcSwi’, the digital value is saved to an

array. After 50 samples have been acquired, a task interrupt is issued by the routine

‘AdcSwi’ to call an interrupt service routine ‘task’ which sends the samples acquired to

MATLAB�.

Step 1 Create a new project ‘F28335_example_ADC.pjt’.

Step 2 Write the main program ‘Main_ADC.c’ as follows:
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Figure 11.36 Data sent to the processor and data received from it.
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#include ‘DSP2833x_Device.h’ // Peripheral address definitions

#include ‘F28335_example.h’ // Main include file

#include <rtdx.h> // RTDX

Uint16 AdcBuf[50]; // ADC data buffer allocation

RTDX_CreateOutputChannel(ochan);

void main(void)

{

InitSysCtrl(); // Initialize the CPU

InitAdc(); // Initialize the ADC

InitEPwm(); // Initialize the PWM

RTDX_enableOutput(&ochan); // Enable the output channel

}

Step 3 Write the initialization functions as in Step 3 in Section 11.8.1.

Step 4Create a new DSP/BIOS configuration ‘f28335_example_ADC.tcf’ and add it to the

project. ADC hardware interrupt is set by entering ‘_ADCINT_ISR’ into ‘PIE_INT1_6’ in

the DSP/BIOS. The hardware interrupt ‘PIE_INT1_6’ will call the interrupt service routine

‘ADCINT_ISR’. A software interrupt is set by adding a software interrupt item ‘ADC_swi’

into the DSP/BIOS and entering ‘_AdcSwi’ into ‘ADC_swi’. The software interrupt

‘ADC_swi’ will call the interrupt service routine ‘AdcSwi’. A task interrupt is set by

adding task interrupt item ‘TSK1’ into the DSP/BIOS and entering ‘_task’ into the task

interrupt item ‘TSK1’which will call the interrupt service routine ‘task’.

Step 5 Write the software interrupt service routines and task interrupt service routines:

void AdcSwi(void) // Interrupt service routine called by software

interrupt ADC_swi

{

static Uint16 *AdcBufPtr = AdcBuf; // Pointer to buffer

AdcRegs.ADCTRL2.bit.RST_SEQ1 = 1; // Reset Sequencing Control

Registers SEQ1

AdcRegs.ADCST.bit.INT_SEQ1_CLR = 1; // Clear ADC SEQ1 interrupt flag

*AdcBufPtr++ = AdcRegs.ADCRESULT0 >> 4; // Read the ADC result

if( AdcBufPtr == (AdcBuf + 50) )

{

AdcBufPtr=AdcBuf; // Rewind the pointer to beginning

TSK_yield(); // Yield a task interrupt

}

}

void task(void) // Interrupt service routine called by task

interrupt TSK1

{

RTDX_write(&ochan,&AdcBuf,sizeof(AdcBuf)); //WritedatatoMATLAB

RTDX_disableOutput(&ochan); // Disable the output channel

}
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Step 6 Create an executable code ‘F28335_ADC.out’. The filename of the executable code

may be set in the item ‘Build Options’ in CCS.

Step 7 Connect the Code Composer Studio (CCS) to the TMS320F28335 processor by

selecting the item ‘Connect’ from the CCS ‘Debug’ menu.

Step 8 Reset the CPU, and load the executable code ‘F28335_ADC.out’ into the processor.

Step 9 Enable RTDX in the CCS window as described in Step 7 of the example in

Section 11.8.2.

Step 10 Start MATLAB� and write a program ‘Example_ADC.m’ as follows:

function void = Example_ADC()

clear(’all’)

% Connect MATLAB to CCS
cc = ticcs; % Get a handle to Code Composer Studio (CCS)

rx = cc.rtdx; % created an alias rx to the RTDX portion of cc

open(rx,’ochan’,’r’) % Open a channel for read access

enable(rx,’ochan’) % Enable read access

% Start processor application from MATLAB platform
cc.run(’run’); % Start the processor program

% Read the ADC data from processor to MATLAB
number_msgs = msgcount(rx,’ochan’) % Determine the number of messages

Read_array = cc.rtdx.readmsg(’ochan’,’int16’, number_msgs);

% Read data from the processor to MATLAB

Voltage = double(Read_array)*3/4096; % Coverter ADC digital value

% to analog voltage value

halt(cc); % Halt the processor

% Plot waveform
plot(Voltage); % Plot the read voltage waveform

end

Step 11 Connect the pin ‘ADCINA0’ on the TMS320F28335 processor to ground.

Step 12Run the program ‘Example_ADC.m’ in theMATLAB�window.The results are shown

in Figure 11.37.

Step 13 Connect the positive terminal of a battery to the pin ‘ADCINA0’ on the

TMS320F28335 processor and the negative terminal to the ground of the processor. The

battery voltage measured using a multimeter is about 1.6V.

Step 14Restart the processor application by selecting ‘Restart’ in the ‘Debug’menu on CCS.
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Step 15 Run the program ‘Example_ADC.m’ in MATLAB�. The results are shown in

Figure 11.38.

11.8.4 CAP Programming

The enhanced capture (eCAP) module (Texas Instruments Inc., 2009e) in TMS320F28335

processor may be used to capture a pulse and to measure its period and duty cycle. In this

example, the application program in the processor is started by a MATLAB� script. The

continuous sinusoidal PWM pulse created from GPIO0 port of the processor serves as the

signal source. By connecting the GPIO0 pin to GPIO5 pin, the PWM pulse is captured to

the processor from GPIO5 port. After the eCAP module has captured two pulses, a hardware

interrupt ‘PIE_INT4_1’ is triggered. The hardware interrupt will call an interrupt service

routine ‘ECAP1_INT_ISR’ which calculates the period and duty cycle of the captured
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Figure 11.37 ADC result of zero voltage from the processor.
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Figure 11.38 Battery voltage acquired by the DSP via an ADC.
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pulse and then post a software interrupt ‘SWI0’. In an interrupt service routine ‘swi_RTDX’,

the period and duty cycle of the pulses are sent to MATLAB�. After the period and duty cycle

of the pulses are received by MATLAB�, the waveform of the pulses is reconstructed and

plotted. Figure 11.39 shows a pulse capture process.

Period 

Pulse 1 

t2t1 t4 t3 

Pulse 2 

Time 

Figure 11.39 Capture process of two pulses in TMS320F28335.

In the capture process:

Time ‘t1’, which coincides with a rising edge, is captured into register ‘ECap1Regs.CAP1’;

Time ‘t2’, which coincides with a falling edge, is captured into register ‘ECap1Regs.CAP2’;

Time ‘t3’, which coincides with a rising edge, is captured into register ‘ECap1Regs.CAP3’;

Time ‘t4’, which coincides with a falling edge, is captured into register ECap1Regs.CAP4’.

The period and duty cycle of the pulsesmay be calculated by the values in the registers as follows:

Duty cycle of pulse 1¼ t1 � t2;

Duty cycle of pulse 2¼ t4 � t3;

Period¼ [(t3 � t1) þ (t4 � t2)]/2.

Step 1 Create a new project ‘F28335_example_CAP.pjt’.

Step 2 Write a main program ‘F28335_example_CAP.c’ as follows and add it to the project.

#include ‘DSP2833x_Device.h’ // Peripheral address definitions

#include ‘F28335_example_CAP.h’ // Main include file

#include <rtdx.h> // RTDX

RTDX_CreateOutputChannel(ochan);

Uint32 PwmDuty; // Measured PWM duty cycle

Uint32 PwmPeriod; // Measured PWM period

Uint32 PwmDuty2; // Measured PWM duty cycle 2

Uint32 PwmPeriod2; // Measured PWM period 2

Uint32 To_pc[4];

void main(void)
{

InitSysCtrl(); // Initialize the CPU

InitGpio(); // Initialize the GPIO pins

InitEPwm(); // Initialize the PWM

InitECap(); // Initialize the Capture units

}
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Step 3 Write initialization functions which are similar to Step 3 in Section 11.8.1.

Step 4Write a header file ‘F28335_example_CAP.h’ and add it to the project, as in Step 4 in

Section 11.8.1.

Step 5 Create a new DSP/BIOS configuration ‘F28335_example_CAP.tcf’ and add it to the

project. CAP hardware interrupt may be set by entering ‘_ECAP1_INT_ISR’ into

‘PIE_INT4_1’ in the DSP/BIOS. The hardware interrupt ‘PIE_INT4_1’ will call the interrupt

service routine ‘ECAP1_INT_ISR’. A software interrupt may be set by adding a software

interrupt item ‘SWI0’ into the DSP/BIOS and entering ‘swi_CAP’ into the item ‘SWI0’. The

software interrupt ‘SWI0’ will call the interrupt service routine ‘swi_CAP’.

Step 6Write an interrupt service routine to create a PWM pulse as follows and add the routine

to the project.

#include ‘DSP2833x_Device.h’ // Peripheral address definitions

#include ‘F28335_example_CAP.h’ // Main include file

#include ‘math.h’

double AA=0.0, CC;

Uint32 BB;

double TWO_PI = 6.28318530717959;

double TWO_PI_div20 = 0.3141592653589795;

void EPWM1_INT_ISR(void) // PIE3.1 @ 0x000D60 EPWM1_INT (EPWM1)

{

PieCtrlRegs.PIEACK.all = PIEACK_GROUP3; // Must acknowledge the PIE group

AA=AA+TWO_PI_div20;

if (AA >= TWO_PI)

AA=0.0;

CC = sin(AA); // Call sine function

CC=CC*18750;

CC=18750-CC*0.8;

BB=(Uint32)CC; // Converter to 32 bit Uint data

EPwm1Regs.CMPA.half.CMPA=BB; // Update compare register

EPwm1Regs.ETCLR.bit.INT = 1; // Clear PWM1 interrupt flag

}

Step 7 Write a CAP interrupt service routine to calculate the period and duty cycle of the

captured pulses as follows and add the routine to the project.

void ECAP1_INT_ISR(void) // PIE4.1 @ 0x000D70 ECAP1_INT (ECAP1)

{

PieCtrlRegs.PIEACK.all = PIEACK_GROUP4; // Must acknowledge the PIE

group

PwmDuty = (int32)ECap1Regs.CAP2 - (int32)ECap1Regs.CAP1;

PwmPeriod = (int32)ECap1Regs.CAP3 - (int32)ECap1Regs.CAP1;

PwmDuty2 = (int32)ECap1Regs.CAP4 - (int32)ECap1Regs.CAP3;

PwmPeriod2 = (int32)ECap1Regs.CAP4 - (int32)ECap1Regs.CAP2;

PwmPeriod = (PwmPeriod + PwmPeriod2)/2;

SWI_post(&SWI0); // Post software interrupt SWI0

ECap1Regs.ECCLR.bit.CEVT4 = 1; // Clear the CEVT4 flag

}
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Step 8 Write an interrupt service routine ‘swi_CAP’ as follows.

void swi_CAP(void)
{

To_pc[0] = PwmDuty; // Duty cycle of pulse 1

To_pc[1] = PwmPeriod; // Period of pulse 1

To_pc[2] = PwmDuty2; // Duty cycle of pulse 2

To_pc[3] = PwmPeriod; // Period of pulse 2 as same as pulse1

RTDX_write( &ochan, &To_pc, sizeof(To_pc) ); // Write data to

MATLAB

}

Step 9Create an executable code ‘F28335_example_CAP.out’. The filename of the executable

code may be set in the ‘Build Options’ in CCS.

Step 10 Connect the Code Composer Studio (CCS) to the TMS320F28335 processor by

selecting item ‘Connect’ from the CCS ‘Debug’ menu.

Step 11 Reset the CPU, and load the executable code ‘F28335_example_CAP.out’ into the

DSP.

Step 12 Enable RTDX in CCS window as described in Step 7 in the RTDX programming

example in Section 11.8.2.

Step 13 Start MATLAB� and write a MATLAB� program ‘Example_CAP.m’ as follows.

function void = Example_CAP()

clear(’all’)

% Connect MATLAB to CCS
cc = ticcs; %Get a handle to Code Composer Studio (CCS)

rx = cc.rtdx; % created an alias rx to the RTDX portion of cc

open(rx,’ochan’,’r’) % Open a channel for read access

enable(rx,’ochan’) % Enable read access

% Start processorP application from MATLAB platform
cc.run(’run’); %Start the processor application program

pause(0.02); %Pause MATLAB 0.02s

halt(cc); %Halt the processor application program

% Read the captured data from processor to MATLAB
number_msgs = msgcount(rx,’ochan’)

%Obtain number of unread message in RTDX channel

out_array = 0;

if ( number_msgs > = 1)

out_array = cc.rtdx.readmsg(’ochan’,’int32’, number_msgs);

%Read data from RTDX channel

A = cell2mat(out_array); %Convert data to a single matrix

end

% Separate duty and period from the matrix A
Period = [];
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Duty = [];

B = double(A) %Convert int32 to double

C = B/(75*1e6)/2 %Convert to real value at processor Clock as 75 MHz

[n,m] = size(C)

for i = 1:m/2

Period(i) = C(i*2); %Separate Period from the matrix

Duty(i) = C(i*2-1); %Separate Duty from the matrix

end

% Build waveform of a sine cycle by captured duties and periods
t = 0:1e-6:1e-3; %Create 1001 points on every pulse period

[nt,mt] = size(t);

Period(1) = []; %Clear first period sample
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Figure 11.40 Duty cycles of pulses captured by the processor.
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Figure 11.41 Waveform of pulses reconstructed by the data captured by the processor.
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Duty(1) = []; %Clear first Duty sample

mm = 20; %20 samples in a cycle with 50 Hz reference and 1kHz carrier

p = [];

timeplot = [];

for j = 1:mm,

if(t(i)<Duty(j))

p(i + mt*(j-1)) = 1.0;

else

p(i + mt*(j-1)) = 0.0;

end

timeplot(i + mt*(j-1)) = (i + mt*(j-1))*1e-6;

end

end

% Plot pulse waveform and duty cycle data
plot(Duty,’.’) % Plot duty cycle

axis([1 20 0 2e-3]);

plot(timeplot, p); % Plot pulse waveform

axis([0 max(timeplot) -0.2 1.2]);

end

Step 14Connect theGPIO0 pin of the processor to theGPIO5 pin by awire and connectGPIO0
pin to the oscilloscope channel 1.

Step 15 Run the program ‘RTDX_ MATLAB_CAP.m’ in MATLAB�. Duty cycles of pulses

are shown in Figure 11.40 and waveform of pulses is shown in Figure 11.41.

On the oscilloscope channel 1, waveform of continuous sinusoidal PWM source may be

observed as shown in Figure 11.42.

Figure 11.42 Waveform of continuous 1 kHz sinusoidal PWM.
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11.9 Summary

This chapter has presented four experiments for verifying some of the intelligent control

algorithms developed in previous chapters. The experimental system consists of an

ADMC331 fixed-point DSP board (Analog Devices Inc.), an IGBT inverter power module

IRPT1058A (International Rectifier Inc.), a data-acquisition board PCL818HG (Advan-

tech Co.Ltd.), an encoder GBZ02 with a resolution of 200 pulses/revolution (China

Sichuan Opto-electronic Co.), three-phase current sensor 3I411A (China WB institute), a

host PC, a data-acquisition PC, and a three-phase induction motor. The hardware systems

and devices from different manufacturers have been successfully integrated to give a

functional experimental drive system. The system has the features of low cost, conve-

nience in data acquisition, and expansion capability. However, program development at

assembly code level is tedious and time-consuming. Based on the simulation models

developed in previous chapters, three experimental programs (motor run up, fuzzy/PI

control, and GA-EKF speed estimation) are developed with DSP assembly language,

Cþþ language, and MATLAB� language.

Experiment 2 has verified the accuracy of the voltage-input model, PWM model, encoder

model, and decoder model in Chapter 3. Experiments 3 and 4 have basically verified the

feasibility of the Fuzzy/PI two-stage controller developed in Chapter 6 and the GA-EKF speed

estimator developed in Chapter 9. The insight and experience gained have provided a firm

foundation for the practical implementation of other intelligent control algorithms. Additional

technical problems need to be tackled, however, in order to advance the drive technology to

production on a commercial scale. These include program code optimization, writing code to

PROM, temperature rise consideration, vibration, and packaging.

In Section 11.8, basic DSP programming techniques necessary for induction motor control

are presented by way of four examples with reference to the TMS320F28335 processor. These

techniques enable the necessary feedback signals, stator voltages, stator currents, and rotor

speed to be acquired and transferred to MATLAB� of a host PC in real-time for use by a

complex intelligent algorithm.
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12

Conclusions and Future
Developments

This book has investigated the induction motor control problem from three perspectives,

namely the theory level, algorithm design level, and hardware implementation level:

1. Modern nonlinear control theory and artificial intelligence principles form the basis of

induction motor control. Development of a control theory should be based on an under-

standing of the physical system, from which an abstract mathematical model (principle or

formulation) is derived.

2. Control algorithm of the drive system is based on an understanding of the control theory

from which a calculation model is produced for achieving the desired performance. In the

book, the intelligent control algorithms presented are based on modern nonlinear control

theory as well as Kalman filter, expert-system, fuzzy-logic, artificial neural-network, and

genetic algorithm principles.

3. Hardware implementation is based on the fine details of the control algorithm, fromwhich a

real physical model is constructed. An ADMC331 DSP-based experimental system has

been constructed for verifying the fuzzy-logic control algorithm and GA-EKF speed

estimation algorithm for an induction motor. ADSP-21xx Family Assembler and Linker

are used for generating an executable program for the experimental investigations.

Based on an understanding of induction motor control and nonlinear feedback control theory,

the induction motor control algorithms and speed estimation algorithms are presented

systematically in Chapter 2.

This book has presented four intelligent induction motor control schemes mainly at the

algorithm level, namely expert-system acceleration control, hybrid fuzzy/PI two-stage control,

neural-network DSC control, and GA-EKF sensorless control. The expert-system is based on

hard or precise computation, whereas the fuzzy-logic, neural-network, and genetic algorithm

are based on soft or approximate computation (Bose, 1997). At the control algorithm level, this

book has demonstrated that expert-system, fuzzy-logic, neural-network, and genetic algorithm

are effective in different aspects of induction motor control. At the hardware level,
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feasibility of the fuzzy/PI two-stage control and GA-EKF sensorless control has essentially

been verified.

12.1 Main Contributions of the Book

The main contributions of the book are as follows:

1. The relationship between the 12 fifth-order nonlinear equations of an induction motor is

investigated. Based on an understanding of induction motor control and nonlinear

feedback control theory, the induction motor control algorithms and speed estimation

algorithms are summarized systematically.

2. Three induction motor models are developed using the MATLAB�/Simulink software.

They are the current-input model, voltage-input model, and discrete-state model. The

current-input model requires the least amount of calculations and is suitable for the study of

current-controlled induction motor drives. The voltage-input model involves matrix calcu-

lations and can be used to study voltage-controlled induction motor drive systems. The

discrete-state model has the most compact representation, but is computationally intensive.

In addition, a PWM model, an encoder model, and a decoder model have been developed.

3. Expert-system-based acceleration control principle and a production system algorithm are

presented in this book. The control scheme is quite different from the usual vector control

schemes that depend on flux and torque calculations. The expert-system controller has the

following characteristics: (1) rotor acceleration of an induction motor is controlled, (2) it

has a small control error but no cumulative error, (3) it is independent of the parameters of

the induction motor, so the same controller can be used for different induction motors, (4)

the control may be performed at any time and state, whereas conventional vector control

must be continuously performed starting from an initial state, (5) its execution time should

be less than that of the conventional vector-control, because the expert-system algorithm

consists mainly of logic operations, and (6) since the acceleration values are obtained by a

differential operation on the angular speed, some error may be produced by the speed

sensor noise in a practical system.

4. A hybrid fuzzy/PI two-stage control algorithm is presented. The fuzzy-logic-based two-

stage control strategy enables a scalar controller to give a performance approaching that of

a field-oriented controller. Consequently, the rotor speed response is almost the same as a

field-oriented controller. The fuzzy controller has the advantages of simplicity and

robustness such as insensitivity to motor parameter changes, input current noise, noise

in the measured speed, and magnetic saturation. Due to the excellent speed response

over the whole speed range, the method should find applications in practical industrial

drive systems.

5. A neural-network-based direct self control algorithm is presented. The neural-network-

based DSC with seven layers of neurons is developed to improve the performance of a

DSP-based direct self controller. The execution time of control is decreased from 250ms
(for the DSP-based controller) to 21 ms (for the ANN-based controller). Simulation results

show that the torque and flux errors resulting from the long execution time are almost

eliminated. Hence, the ANN-basedDSC drive system has better robustness against current

noise and load changes than a DSP-based DSC drive system. Using neural-network
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techniques, hardware implementation of DSC presents less problems and it is envisaged

that neural-network-based DSC will gain wider acceptance in future.

6. A novel method is presented to achieve good performance of an extended Kalman filter

(EKF) for speed estimation of an induction motor drive. A real-coded genetic algorithm

(GA) is used to optimize the noise covariance and weight matrices of the EKF, thereby

ensuring filter stability and accuracy in speed estimation. Simulation studies on a constant

V/Hz controller, a direct self controller, and a field-oriented controller demonstrate the

efficacy of the presented method.

7. Integral equations of the induction motor are presented. Using the integral equations, a

linear-neural-networkmodel of inductionmotormay be trainedwithmeasured data from a

running induction motor. Almost all the machine parameters can be derived directly from

the trained neural network models. With the estimated parameters, load, stator flux, and

rotor speedmay be estimated for inductionmotor control.With the estimated rotor speed, a

simulation programming example of integral model-based sensorless control of induction

motor is presented.

8. Performance of conventional PWM inverter is improved by genetic algorithms. To reduce

total harmonic distortion and to spread the harmonic energy of PWM inverter output

waveform, four GA optimization strategies are presented in the book. They are (1) GA-

optimized random-carrier-frequency PWM, (2) GA-optimized random-pulse-position

PWM, (3) GA-optimized random-pulse-width PWM, and (4) GA-optimized hybrid

random pulse-position and pulse-width PWM. A single-phase inverter is employed for

the optimization study.

9. This book has presented five experiments to verify the intelligent control algorithms for an

induction motor: (1) An experiment to determine the electrical parameters of an induction

motor, (2) a motor run-up experiment to verify the induction motor model, PWM model,

encodermodel, and decodermodel, (3) aDSP-based experiment for the fuzzy/PI two-stage

controller to verify the feasibility of the fuzzy/PI two-stage control algorithm, (4) a GA-

EKF experiment to verify the feasibility of the GA-EKF speed estimation algorithm, (5)

GA-optimized single-phase random-carrier-frequency PWM inverter implemented by a

TMS320F2812 DSP board and an IRAMX16UP60A inverter module.

10. Source codes of the programming examples and control algorithms presented in the book

are included on the book companion website for easy reference by the reader. These

program modules could form the basis for more advanced intelligent induction control

applications that the readers may wish to investigate.

12.2 Industrial Application of New Induction Motor Drives

The demand for high-performance induction motor drives is rapidly increasing, particularly in

the area of traction, electric vehicles, oil-drilling and aerospace applications. An ideal

induction motor drive should have the following functions:

A. High-performance control

B. Performance should be unaffected by machine parameter variations

C. Possibility of speed-sensorless control

D. Low cost and fast dynamic response
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Currently, vector control technique has only provided a practical solution for target A and

parameter estimation technique may be a possible solution for target B, while speed and

position estimation techniques are being developed to achieve target C.

Addressing the unresolved problemswith present-day inductionmotor controllers, this book

investigated and presented four artificial intelligence (AI) control techniques for the induction

motor drive. They include an expert-system-based controller which gives a complete solution

for targets A and B, a genetic algorithm optimized extended Kalman filter with high-precision

speed estimation for a sensorless drive and an integral model based sensorless drivewhich give

a practical solution for target C, and a low-cost neural-network-based vector controller will

give a hardware solution for target D. In future, ANN-based induction motor controller may be

integrated in several ASIC (application specific integrated circuit) chips with fast parallel

calculation and low hardware cost to replace the present DSP (digital signal processor) based

controller.

A comparison of various controllers on advantages, disadvantages, and cost is summarized

in Table 12.1 thatmay serve as an application reference. The various controllers are designed to

suit different application conditions, while their technical details could be found from the

relevant chapters.

The constant V/Hz controller may be used in a low-performance drive, but it has a low

control accuracy and slow transient response. On the other hand, FOC, DSC, and expert-

system acceleration controller are suitable for high-performance applications and they

have high control accuracy and a fast transient response. The fuzzy/PI two-stage

controller has a performance that is intermediate between that of a constant V/Hz controller

and FOC.

In practical industrial applications, induction motor drives are generally selected according

to the desired performance and cost of the controllers. A high-performance controller (except

the ANN-based controller) is currently implemented by a DSP device that will result in high

cost. A low or medium performance controller is generally implemented by a dedicated

microprocessor that helps to reduce the cost. Although the software implementation of low

performance controller is easier compared with a high-performance controller, the hardware

implementation of the two controllers presents almost the same level of complexity, because

different a.c. drives employ basically the same components, such as an inverter, a controller, an

induction motor, and some sensors.

In applications requiring a high-performance a.c. drive which is unaffected by machine

parameter variations, such as electric vehicles and precision machine tools, the expert-system

controller presented in the book should be considered.

When a low cost drive is desired, such as oil-drilling, civil-engineering equipment and pump,

it is recommended to replace the current constant V/Hz controller by the fuzzy/PI two-stage

controller developed.

Elimination of the speed sensor will increase the reliability and ruggedness of the overall

drive system, hence the GA-EKF sensorless drive may be used for applications that require

speed control in adverse environments or submerged drive systems.

The ANN-based induction motor controller has fast parallel performance and low cost. It is

envisaged that when special ANN chips for motor control are available on the market, the

ANN-based induction motor controller will gradually supersede the expensive DSP device for

implementing an induction motor drive.
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12.3 Future Developments

Future developments on intelligent control of induction motor are briefly discussed as

follows:

Table 12.1 Comparison of various induction motor controllers.

Controller Advantages Disadvantages Cost

Constant V/Hz

controller

. Stable . Low-performance . Low

. Performance dependent

on machine parameters

. Micro-processor

based

Fuzzy controller . Performance approximates that

of FOC

. Low

. Stable . Medium-performance . Micro-processor

based
. Performance is less dependent

on machine parameters

FOC and DSC . High-performance . Performance is

dependent on machine

parameters

. Higher

. Stable . Integral error

accumulation

. DSP based

. Flux and torque are controlled

Expert system

controller

. High-performance . Performance is

dependent on high-

precision speed sensor

. Highest

. Performance is independent of

machine parameter variations

. DSP based and

high precision

encoder
. No integral error accumulation

ANN controller . High-performance . Performance is

dependent on machine

parameters

. Lowest

. Flux and torque are controlled . Integral error

accumulation

. Neural device

based
. Shortest time delay of controller
. Robust structure

Controller with

GA-EKF

estimator

. No speed sensor . Performance is

dependent on machine

parameters

. Higher

. DSP based

Controller with

integral model

estimator

. No speed sensor . Performance is

dependent on machine

parameters

. Higher

. DSP based
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12.3.1 Expert-System-based Acceleration Control

1. Although feasibility of the expert-system-based acceleration controller has been confirmed

from computer simulation studies, it should be verified at the hardware level. The controller

hardware may be implemented on a DSP (digital signal processor) with a high-precision

encoder.

2. In order to improve the expert-system controller performance, the control rules and control

knowledge could be refined by other AI techniques, such as Fuzzy logic, ANN or GA.

12.3.2 Hybrid Fuzzy/PI Two-Stage Control

1. To develop a current-magnitude fuzzy control in place of the PI control.

2. To develop a designmethod for the fuzzy controller that can accommodate the effect of load

changes, disturbances, and parameter variations.

3. To improve the fuzzy/PI control algorithm at the computer simulation stage by using some

AI techniques such as ANN-Fuzzy or GA-Fuzzy to optimize the membership functions

instead of using the fairly standard and straightforward fuzzy method.

12.3.3 Neural-Network-based Direct Self Control

1. The neural-network-based DSC should be further improved in order to decrease the types

and number of neurons.

2. A neural-network-based speed sensorless DSC can be developed by designing a sub-

network for speed estimation.

3. To develop a neural-network controller whose performance is immune to disturbances and

motor parameter variations.

12.3.4 Genetic Algorithm for an Extended Kalman Filter

Kalman filter technique has been widely used in different engineering disciplines. Further

application of the GA-EKF method presented in this book need to be explored.

12.3.5 Parameter Estimation Using Neural Networks

Neural-network-based parameter estimation employs integral models of induction motor. The

advantage of the integral models is that they are insensitive to measurement noise created by

rapid turn-on or turn-off of the semiconductor switch devices. New control algorithm based on

integral equations of induction motor and real-time parameter measurement based on reset-

integral method need to be developed.

12.3.6 Optimized Random PWM Strategies Based on Genetic Algorithms

GA-optimized random PWM strategies will obviously reduce total harmonic distortion and

boost energy converter efficiency for PWM inverters. Further work would be to extend the

technique to three-phase PWM inverters that findwider applications in inductionmotor drives.
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12.3.7 AI-Integrated Algorithm and Hardware

With the aid of modern nonlinear control theory and development of artificial intelligence

techniques, induction motor drives will continue to evolve. It is envisaged that more advanced

drives employing AI-integrated algorithm and ANN-integrated hardware will emerge, for

example, a novel fuzzy-expert induction motor controller with GA-EKF speed estimator and

implemented by ANN-integrated chips.
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Appendix A Equivalent
Circuits of an Induction Motor

The ‘G’ equivalent circuitmodel of an inductionmotor in the stator reference-frame is shown in

Figure A.1.

The ‘T’ equivalent circuitmodel of an inductionmotor in the stator reference-frame is shown

in Figure A.2.
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Appendix B Parameters of
Induction Motors

The parameters of the three induction motors used for the simulation studies in the book are

listed below.

Table B.1 Motor 1.

Type three-phase, wye-connected,

squirrel-cage induction motor

Rated power KWrat¼ 7.5 kW

Rated stator voltage Vs,rat¼ 220V

Rated frequency frat¼ 60Hz

Rated speed nM,rat¼ 1160 r/min

Number of poles P¼ 6

Stator resistance Rs¼ 0.282O/ph
Stator leakage reactance Xls¼ 0.512O/ph
Rotor resistance referred to stator Rr¼ 0.151O/ph
Rotor leakage reactance referred to stator Xlr¼ 0.268O/ph
Magnetizing reactance Xm¼ 14.865O/ph
Moment of inertia of the rotor JM¼ 0.4 kgm2

Coefficient of friction Cf¼ 0.124
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Table B.2 Motor 2.

Type three-phase, wye-connected,

squirrel-cage induction motor

Rated power KWrat¼ 0.75 kW

Rated stator voltage Vs,rat¼ 220V

Rated frequency frat¼ 60Hz

Rated speed nM,rat¼ 1770 r/min

Number of poles P¼ 4

Stator resistance Rs¼ 3.353O/ph
Stator leakage reactance Xls¼ 1.073O/ph
Rotor resistance referred to stator Rr¼ 1.991O/ph
Rotor leakage reactance referred to stator Xlr¼ 1.073O/ph
Magnetizing reactance Xm¼ 1.029O/ph
Moment of inertia of the rotor JM¼ 0.05 kgm2

Table B.3 Motor 3 (Bodine Electric Company model 295).

Type three-phase, wye-connected,

squirrel-cage induction motor

Rated power kWrat¼ 0.147 kW

Rated stator voltage Vs,rat¼ 230V

Rated frequency frat¼ 60Hz

Rated speed nM,rat¼ 1790 r/min

Number of poles P¼ 4

Stator resistance Rs¼ 14.6O/ph
Stator leakage reactance Xls¼ 8.37O/ph
Rotor resistance referred to stator Rr¼ 12.76O/ph
Rotor leakage reactance referred to stator Xlr¼ 19.53O/ph
Magnetizing reactance Xm¼ 111.7O/ph
Moment of inertia of the rotor JM¼ 0.001 kgm2

Coefficient of friction Cf¼ 0.000124
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Appendix C M-File of Discrete-
State Induction Motor Model

M-file: Induction_motor.m

function [sys,x0] = Induction_motor(t,x,u,flag,M)

global Tr Ts Lr Ls Lm K1 Kr Rs Rr J Pole;

Lr=0.0417; Ls=0.0424; Lm=0.041; Rs=0.294; Rr=0.156;

Tr=Lr/Rr; J=0.8;Pole=6;

K1=(1-Lm*Lm/Ls/Lr)*Ls;

Kr=Rs+Lm*Lm*Rr/Lr/Lr;

if flag==0

x0=zeros(5,1);

sys=[0,5,5,3,0,0];

elseif flag==2

diff_FI=[(1-Kr/K1*M)*x(1)+Lm*Rr/Lr/Lr/K1*x(3)*M

+Lm/Lr*x(5)/K1*x(4)*M*Pole/2;

(1-Kr/K1*M)*x(2)-Lm/Lr*x(5)*M/K1*x(3) *Pole/2

+Lm*Rr/Lr/Lr/K1*x(4)*M;

Lm/Tr*x(1)*M+(1-1/Tr*M)*x(3)-x(5)*x(4)*M*Pole/2;

Lm/Tr*x(2)*M+x(5)*x(3)*M*Pole/2+(1-1/Tr*M)*x(4);

x(5)+Pole*Lm*(x(3)*x(2)-x(4)*x(1))*M/(J*Lr)/3-u(3)*M/J]

+[u(1)/K1*M;u(2)/K1*M;0;0;0];

sys=diff_FI;

elseif flag==3

sys=x;

elseif flag==4

sys=(round(t/M)+1)*M;

else

sys=[];

end
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Appendix D Expert-system
Acceleration Control Algorithm

The expert-system acceleration control algorithm is implemented by a production system

(Buchanan and Shortliffe, 1984; Hayes-Roth, 1985). The knowledge base of the controller is

represented by the set of production rules that represents the expertise of the control area. Case-

specific data of the knowledge base are kept in the working memory of production system.

Finally, the inference engine is implemented by the recognize-act cycle of the production

system.

The following set of symbols is defined as:

a� acceleration command

a actual acceleration

Da an increment of acceleration Da¼ a(t þ Dt)� a(t)

i denotes area in which the stator current vector lies

n a number which denotes a stator voltage vector (mod(n)¼ 7)

m a temporary register of the stator voltage vector

t time counter

th retaining time

A1 a� � 0

A2 a� � 0

A3 a� � 0

B1 Da(Vs(n))> ZDa(Vs(n þ 1))

B2 Da(Vs(n))� ZDa(Vs(n þ 1))

B3 Da(Vs(n))> ZDa(Vs(n þ 2))

B4 Da(Vs(n))� ZDa(Vs(n þ 2))

B5 Da(Vs(n))< ZDa(Vs(n� 1))

B6 Da(Vs(n))� ZDa(Vs(n� 1))

B7 Da(Vs(n))< ZDa(Vs(n� 2))

B8 Da(Vs(n))� ZDa(Vs(n� 2))

C1 n¼ 0 number of zero voltage vector

C2 n 6¼ 0 nth number of non-zero voltage vector
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D1 a� a� þ e
D2 a� � e< a< a� þ e
D3 a� a� � e
E t� th (comparison stage)

:E 0< t< th (retaining stage)

F o*
o > 0

:F o*
o < 0

H X1, X2 or X3 has been performed when t> th
:H X1, X2 or X3 has not been performed when t> th
S a� ¼ 0^oo¼ 0

Vs(k) a stator voltage supplied to induction motor

X1 Supply Vs(n) and Vs(n þ 1) to induction motor in succession

X2 Supply Vs(n) and Vs(n þ 2) to induction motor in succession

X3 Supply Vs(n) and Vs(n� 1) to induction motor in succession

o*
o rotor speed command

oo actual rotor speed

e threshold of acceleration error

Z preferential parameter

The production system consists of the following set of rules:

Rule#Condition Action Note

1. E^:H ! n¼ i Detect region of current

vector

2: E ^ A1 ^ :H!X1

3: E ^ A2 ^ :H!X2

4: E ^ A3 ^ :H!X3

9=
; Input comparison voltages

5: ðE ^ A1 ^ H ^ B1Þ _ ðE ^ A2 ^ H ^ B3Þ _ ðE ^ A3 ^ H ^ B5Þ
_ðE ^ A2 ^ H ^ B7Þ! k ¼ n; t ¼ 0

6: E ^ A1 ^ H ^ B2 ! k ¼ nþ 1; t ¼ 0

7: E ^ A2 ^ F ^ H ^ B4 ! k ¼ nþ 2; t ¼ 0

8: E ^ A2 ^ :F ^ H ^ B8 ! k ¼ n�2; t ¼ 0

9: E ^ A3 ^ H ^ B6 ! k ¼ n�1; t ¼ 0

9>>>>>>>=
>>>>>>>;

10. (A1^:E^ D1^C1)_(A3^:E^ D3^C1) ! Vs(k) Keep zero voltage

11. (A1^:E^ D1^C2)_(A3^:E^ D3^C2) ! m¼ k, k¼ 0, Vs(k) Insert zero voltage

12. :E^D2 ! Vs(k) Retaining voltage

13. (A1^:E^ D3^C1)_(A3^:E^ D1^C1) ! k¼m, Vs(k) Restore optimum voltage

14. (A1^:E^ D3^C2)_(A3^:E^ D1^C2) ! Vs(k) Keep optimum voltage

A production system is defined by (George, 1989):

1. The set of production rules. These are called productions. A production is a condition-

action pair.

Select an optimum voltage

vector, and modify the

rule base
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2. Working memory contains a description of the current state in a reasoning process. This

description is a pattern that is matched against the condition part of a production to select

appropriate problem-solving action.

3. The recognize-act cycle. The patterns in working memory are matched against the

conditions of the production rules; this produces a subset of the productions, called the

conflict set, whose conditions match the patterns in working memory. One of the produc-

tions in the conflict set is then selected (conflict resolution) and the production is fired. After

the selected production rule is fired, the control cycle repeats with the modified working

memory.
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Appendix E Activation
Functions of Neural Network
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Appendix F M-File of Extended
Kalman Filter1

function [sys,x0] = kalman(t,x,u,flag,T)

% input, u: Vds, Vqs, Ids, Iqs

% states, x: Ids, Iqs, Fids, Fiqs, speed

% output: Ids, Iqs, Fids, Fiqs, speed

%sample time: T

global Tr Ts Lr Ls Lh K1 Kr Rs Rr Q R GQG G x_1 P_1 K P h

Y out;

% Motor parameters

Lr=0.0417;Ls=0.0424;Lh=0.041;Rs=0.294;Rr=0.156;H_pole=6/2;Tr=Lr/Rr;

Kl=(1-Lh*Lh/Ls/Lr)*Ls; Kr=Rs+Lh*Lh*Rr/Lr/Lr;

% initial parameters and states

if flag==0

x0=zeros(5,1);

K=zeros(5,2);

P=[1 0 0 0 0;

0 1 0 0 0;

0 0 1 0 0;

0 0 0 1 0;

0 0 0 0 1];

G=[1e-10 0 0 0 0;

0 1e-10 0 0 0;

0 0 1e-10 0 0;

0 0 0 1e-10 0;

0 0 0 0 1e-10];

1 Portions reprinted by permission of K.L. Shi, T.F. Chan, Y.K. Wong and S.L. Ho, “Speed estimation of induction

motor using extendedKalmanfilter,” IEEE2000WinterMeeting, vol. 1, pp. 243–248, January 23–27, 2000, Singapore.

� 2000 IEEE.
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Q=[1e-5 0 0 0 0;

0 1e-5 0 0 0;

0 0 1e-5 0 0;

0 0 0 1e-5 0;

0 0 0 0 1e-5];

R=[0.001 0

0 0.001];

GQG=G*Q*G’;

sys=[0,5,5,4,0,0];

%Update discrete states

elseif abs(flag)==2

% Set measurement variable

U=[u(1);u(2)]; Y=[u(3);u(4)];

% Equation (7.5): Prediction of state
dif_F=[1-Kr/K1*T,0,Lh*Rr/Lr/Lr/K1*T,Lh/Lr*x(5)*H_pole/K1*T,Lh/Lr*x

(4)/K1*T;

0,1-Kr/K1*T,-Lh/Lr*x(5)*H_pole/K1*T,Lh*Rr/Lr/Lr/K1*T,

-Lh_K/Lr_K*x(3)/K1_K*T;

Lh/Tr*T,0,1-T/Tr,-x(5)*H_pole*T,-x(4)*T;

0,Lh/Tr*T,x(5)*H_pole*T,1-T/Tr,x(3)*T;

0,0,0,0,1];

x_1=[ dif_F(1,1)*x(1)+dif_F(1,3)*x(3)+dif_F(1,4)*x(4);

dif_F(2,2)*x(2)+dif_F(2,3)*x(3)+dif_F(2,4)*x(4);

dif_F(3,1)*x(1)+dif_F(3,3)*x(3)+dif_F(3,4)*x(4);

dif_F(4,2)*x(2)+dif_F(4,3)*x(3)+dif_F(4,4)*x(4);

dif_F(5,5)*x(5)]+T*[u(1)/K1;u(2)/K1;0;0;0 ];

% Equation(7.7): Estimation of error covariance matrix
GQG=GQG-dif_F*GQG*dif_F’*T;

P_1=dif_F*P*dif_F’+GQG;

% Equation(7.14): Calculation of h and diff_h
h=[x(1);x(2)]; dif_h=[1 0 0 0 0;0 1 0 0 0];

% Equation(7.9): Calculation of Kalman Filter
K=P_1*dif_h’*inv(dif_h*P_1*dif_h’+R);

% Equation(7.11): Estimation of Kalman Filter
out=x_1+K*(Y-h);

sys=out;

% Equation(7.12): Update of the error covariance matrix
P=P_1-K*dif_h*P_1;

elseif flag==3

sys=out;

elseif flag==4

sys=(round(t/T)+1)*T;

else

sys=[];

end
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Appendix G ADMC331-based
Experimental System

Figure G.1 Complete experimental system with host PC and notebook computer for data

acquisition.
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Figure G.2 Close-up view of the ADMC331 kit and the induction motor.
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Appendix H Experiment 1:
Measuring the Electrical
Parameters of Motor 3

The motor is a three-phase 147-W, 230-V induction motor (Model 295 Bodine Electric Co.).

The motor is Y-connected with no access to the neutral point.

1. DC Resistance Test

As shown in Figure H.1, a DC voltage VDC is applied so that the current IDC is close to the

motor rating.

Because the machine is Y-connected, Rs¼Rdc/2¼ (VDC/IDC)/2.

From measurement, VDC¼ 30.6V, IDC¼ 1.05 A.

Hence,

Rs ¼ RDC

2
¼ ð30:6=1:05Þ

2
¼ 14:6O=phase:

2. No Load Test

The setup for the no-load test and locked-rotor test is shown in Figure H.2.

a

b
IM 

c

A

V

Idc 

Vdc

Open

Figure H.1 Circuit for DC resistance test.
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With the motor running at no load, measure V, I & P to find the machine reactance Xn �
Xls þ Xm. The measured data are as follows:

Frequency (Hz) 50

Voltage (V) 220

Current (A) 1.22

Real power (W) 128.2

At no load the per-unit slip s is approximately zero, hence the equivalent circuit is as shown in

Figure H.3.

The real power P represents,

1. Hysteresis and Eddy current losses (core losses)

2. Friction and windage losses (rotational losses)

3. Copper losses in stator and rotor (usually small at no load)

Phase voltage

Va ¼ Vffiffiffi
3

p ¼ 220ffiffiffi
3

p ¼ 127 V

Xm

s 0 means Rr/s  infinite 
(open circuit) 

≈ ≈

Rs Xls 

Va

+

–

Ia

Xr

Figure H.3 Equivalent circuit of three-phase induction motor under no-load test.

A A

B

C

N

Three-phase  
wattmeter IM

AC 220V 
3 phase

V

Figure H.2 Circuit for no-load and locked-rotor test.
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Phase current

Ia ¼ 1:22 A

Phase real power

Pa ¼ P=3 ¼ 128:2� 3 ¼ 42:73W

Phase reactive power

Qa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðVaIaÞ2�P2

a

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð127� 1:22Þ2�42:732Þ

q
¼ 148:93 VAr

Xn ¼ Qa

I2a
¼ 148:93

1:222
¼ 100:06O

Since s� 0,

Xn � Xls þXm:

3. Locked-rotor Test

With the rotor locked, the rotor speed is zero and the per-unit slip is equal to unity. The

equivalent circuit is as shown in Figure H.4 or Figure H.5.

X2

R2

Rs Xls 

Va

+

–

Ia

Figure H.5 Simplified equivalent circuit of three-phase induction motor under locked-rotor test.

Xm Rr

Rs Xls 

Va

+

–

Ia

Xr

Figure H.4 Equivalent circuit of three-phase induction motor under locked-rotor test.
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The test data are:

Frequency (Hz) 50

Voltage (V) 69.32

Current (A) 1.2

Real power (W) 103.35

Phase voltage

Va ¼ Vffiffiffi
3

p ¼ 69:32ffiffiffi
3

p ¼ 40:02 V

Phase current

Ia ¼ 1:2 A

Active power per phase

Pa ¼ P

3
¼ 103:35

3
¼ 34:45W

Reactive power per phase

Qa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðVaIaÞ2�P2

a

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð40:02� 1:2Þ2�34:452Þ

q
¼ 33:46 VAr

For a class C motor,

Xls ¼ 0:3� Qa

I2a
¼ 0:3� 33:46

1:22
¼ 6:97O

Xlr ¼ 0:7� Qa

I2a
¼ 0:7� 33:46

1:22
¼ 16:27O:

From the no-load test, Xn ¼ 100:06O, so

Xm ¼ Xn�Xls ¼ 100:06� 6:97 ¼ 93:09O

R ¼ Pa

I2a
¼ 34:45

1:22
¼ 23:92O:

From Figure H.5,

R2 ¼ R�Rs ¼ 23:92� 14:6 ¼ 9:32O:
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Comparing Figures H.4 and H.5,

R2 þ jX2 ¼ ðRr þ jXlrÞ � jXm

ðRr þ jXlrÞþ jXm

R2 � RrX
2
m

Rr þðXlr þXmÞ2

Rr ¼ R2 �
�
Xlr þXm

Xm

�2

¼ 9:32�
�
16:27þ 93:09

93:09

�2

¼ 12:86O:

Summarizing,

1. Stator winding resistance Rs¼ 14.6O/phase
2. Rotor winding resistance Rr¼ 12.76O/phase
3. Magnetizing reactance Xm¼ 93.09O/phase

The magnetizing inductance per phase is

Lm ¼ Xm

2pf
¼ 93:09

2p� 50
¼ 0:2963H:

Stator leakage reactance Xls¼ 6.97O/phase
The stator inductance per phase is

Lls ¼ Xls

2pf
¼ 6:97

2p�50
¼ 0:0222H:

Rotor leakage reactance Xlr¼ 16.27O/phase,
The rotor leakage inductance per phase is

Llr ¼ Xlr

2pf
¼ 16:27

2p�50
¼ 0:0518H:
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Appendix I DSP Source Code for
the Main Program of Experiment 2

.MODULE/RAM/SEG=USER_PM1/ABS=0x30 main;

#include <c:\ADMC331\TgtFiles\admc331.h>

#include <c:\ADMC331\TgtFiles\romutil.h>

#include <c:\ADMC331\TgtFiles\macro.h>

#include <c:\ADMC331\TgtFiles\constant.h>

#include <dac.h>

#include <pwm331.h>

.VAR/DM/RAM/SEG=user_dm VphaseA;

.VAR/DM/RAM/SEG=user_dm ThetaA;

.VAR/DM/RAM/SEG=user_dm VphaseB;

.VAR/DM/RAM/SEG=user_dm ThetaB;

.VAR/DM/RAM/SEG=user_dm VphaseC;

.VAR/DM/RAM/SEG=user_dm ThetaC;

.ENTRY PWMSYNC_ISR;

.ENTRY PWMTRIP_ISR;

.VAR/DM/RAM/SEG=USER_DM Vdc;

.VAR/DM/RAM/SEG=USER_DM Vdc_max_inv;

.INIT Vdc_max_inv : Vdc_INV;

{ Phase increment constant :

Desired frequency = 60 Hz

PWM frequency = 10 kHz

PWM cycles per period = 10000/60 =

[-1,1] = [-pi, pi]

phase increment = 2 * 60 * 32768 / 10000 = 393 }

.CONST delta = 393;

{ Initialization Code }

STARTUP:
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ICNTL = 0x00; {Configure interrupt format:

disable nested interrupts

IRQ0,1,2 level sensitive }

ay0 = 0x00E; {Enable s/w and SPORT1 interrupts for debugger }

ar = IMASK;

ar = ar OR ay0;

IMASK = ar;

{ initialize DAC routines }

call init_DAC;

{ initialize the PWM block }

call init_PWM;

{ initialize phase angles }

ar = 0x0000;

dm(ThetaA) = ar;

ay0 = TwoPiOverThree;

ar = ar + ay0;

dm(ThetaB) = ar;

ar = ar + ay0;

dm(ThetaC) = ar;

IFC = 0x80; {Clear any pending IRQ2 interrupt }

ay0 = 0x200; {Enable IRQ2 interrupts }

ar = IMASK;

ar = ar OR ay0;

IMASK = ar;

{ do first DAC write to start autobuffer process }

call update_DAC;

{ Main loop : empty, just waits for interrupts }

MAINLOOP:

jump MAINLOOP;

PWMSYNC_ISR:

IMASK = 0x06; { enable Sport1 interrupts for debugger }

{ increment phase angles }

ax0 = dm(ThetaA);

ay0 = delta;

ar = ax0 + ay0;

dm(ThetaA) = ar;

ax0 = dm(ThetaB);

ay0 = delta;

ar = ax0 + ay0;

dm(ThetaB) = ar;

ax0 = dm(ThetaC);

ay0 = delta;

ar = ax0 + ay0;

dm(ThetaC) = ar;
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{ calculate phase voltages by taking sine of angleand then

mulitplying by 0.5 to put on the range[-0.5, 0.5] }

ax0 = dm(ThetaA);

M5 = 1;

L5 = 0;

call ADMC_SIN;

my1 = ar;

mr = 0;

mx0 = 0x4000;

mr = mr + mx0 * my1 (SS);

dm(VphaseA) = mr1;

ax0 = dm(ThetaB);

M5 = 1;

L5 = 0;

call ADMC_SIN;

my1 = ar;

mr = 0;

mx0 = 0x4000;

mr = mr + mx0 * my1 (SS);

dm(VphaseB) = mr1;

ax0 = dm(ThetaC);

M5 = 1;

L5 = 0;

call ADMC_SIN;

my1 = ar;

mr = 0;

mx0 = 0x4000;

mr = mr + mx0 * my1 (SS);

dm(VphaseC) = mr1;

{ write to PWM generator }

sr1 = dm(VphaseA);

ay1 = dm(VphaseB);

my1 = dm(VphaseC);

call WR_PWM_DUTY;

call read_ADC;

dm(Vdc) = ar;

call Vdc_HANDLING;

{ write to DAC }

write_DAC(Vdc_as, DAC1)

write_DAC(Vdc_bs, DAC2)

write_DAC(Vdc_cs, DAC3)

rti;

PWMTRIP_ISR:

imask = 0x06; { unmask SPORT1 interrupts for debugger}

{ check the PWMTRIP input, if it has gone high restart the PWM block }

AR = DM(SYSSTAT);
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AR = TSTBIT 0 of AR;

IF NE JUMP RESTART_PWM;

CNTR = H#3FF ;

DO Wait0 UNTIL CE; { wait 10us }

Wait0: NOP;

{checkthePWMTRIPinputagain,ifithasgonehighrestartthePWMblock}

AR = DM(SYSSTAT);

AR = TSTBIT 0 of AR;

IF NE JUMP RESTART_PWM;

RTI;

{ After a shutdown - restart the PWM. }

RESTART_PWM:

CNTR = H#3FF ;

DO Wait20 UNTIL CE; { wait 10us }

Wait20: NOP;

IFC = 0X80; { clear IRQ2 interupt }

AR = DM(IRQFLAG);

call INIT_PWM;

RTI;

{ Measure the bus-voltage for correction of the phase voltages. }

Vdc_HANDLING:

{ calculate Vdc(measured) / Vdc(max) }

MX0 = DM(Vdc_max_inv);

MY0 = DM(Vdc);

MR = MX0*MY0 (SS);

{ Vdc_as = VphaseA * Vdc(measured) / Vdc(max) }

MX0 = MR1;

MY0 = DM(VphaseA);

MR = MR1*MY0 (SS);

SR = ASHIFT MR1 BY 2 (HI);

DM(Vdc_as) = SR1;

{ Vdc_bs = VphaseB * Vdc(measured) / Vdc(max) }

MY0 = DM(VphaseB);

MR = MX0*MY0 (SS);

SR = ASHIFT MR1 BY 2 (HI);

DM(Vdc_bs) = SR1;

{ Vdc_cs = VphaseC * Vdc(measured) / Vdc(max) }

MY0 = DM(VphaseC);

MR = MX0*MY0 (SS);

SR = ASHIFT MR1 BY 2 (HI);

DM(Vdc_cs) = SR1;

RTS;

.ENDMOD;
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Appendix J DSP Source Code for
the Main Program of Experiment 3

.MODULE/RAM/SEG=USER_PM1/ABS=0x30 main;

#include <c:\adi\mcd331\TgtFiles\admc331.h>;

#include <c:\adi\mcd331\TgtFiles\macro.h>;

#include <c:\adi\mcd331\TgtFiles\romutil.h>

{Local program variable definitions}

{ Three phase stator currents }

.VAR/DM/RAM/SEG=USER_DM Ias;

.VAR/DM/RAM/SEG=USER_DM Ibs;

.VAR/DM/RAM/SEG=USER_DM Ics;

.VAR/DM/RAM/SEG=user_dm ThetaA;

.VAR/DM/RAM/SEG=user_dm ThetaB;

.VAR/DM/RAM/SEG=user_dm ThetaC;

{ Phase current offsets, measured at startup }

.VAR/DM/RAM/SEG=USER_DM Ia_offset;

.VAR/DM/RAM/SEG=USER_DM Ib_offset;

.VAR/DM/RAM/SEG=USER_DM Ic_offset;

{ DC bus voltage: actual and 1/max }

.VAR/DM/RAM/SEG=USER_DM Vdc;

.VAR/DM/RAM/SEG=USER_DM Vdc_max_inv;

{ Three reference voltages }

.VAR/DM/RAM/SEG=USER_DM VrefA;

.VAR/DM/RAM/SEG=USER_DM VrefB;

.VAR/DM/RAM/SEG=USER_DM VrefC;

.VAR/DM/RAM/SEG=USER_DM Omega_set;

{ Real time clock variables }

.VAR/DM/RAM/SEG=USER_DM Count;

.VAR/DM/RAM/SEG=USER_DM Time;
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{ Flag indicating whether first PWMSYNC has occurred }

.VAR/DM/RAM/SEG=USER_DM firstFlag;

{ Direction flag }

.VAR/DM/RAM/SEG=USER_DM dir_flag;

.CONST CW_FLAG = 0x01;

.CONST CCW_FLAG = 0x00;

{ for debugging only }

.VAR/DM/RAM/SEG=USER_DM StepTime;

{ Local program variable initialization }

.INIT Vdc_max_inv : Vdc_INV;

.INIT StepTime : 1; { time to apply speed command from potentiometer, in 0.1s

increments }

{ Subroutines defined in this module }

.ENTRY PWMSYNC_ISR;

.ENTRY PWMTRIP_ISR;

{PWM frequency = 10 kHz

2 * pi * time increment = 2 * 32768 / 10000 = 7}

.CONST delta = 7;

{ Subroutines defined in other modules }

#include <dac.h>

#include <admc331.h>

#include <pwm331.h>

#include <ir_init.h>

#include <model.h>

#include <mathfix.h>

#include <math_32b.h>

#include <enco.h>

#include <cntrl.h>

#include <capture.h>

#include <speedset.h>

{ Global variable definitions }

.GLOBAL VrefA;

.GLOBAL VrefB;

.GLOBAL VrefC;

.GLOBAL Omega_set;

.GLOBAL ImRef;

.GLOBAL Freq;

.GLOBAL Fslip

.GLOBAL IaRef;

.GLOBAL IbRef;

.GLOBAL IcRef;

{ Initialization Code }
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STARTUP:

ay0 = 0x00E; {Enable s/w, and SPORT1 interrupts }

ar = IMASK;

ar = ar OR ay0;

IMASK = ar;

ICNTL = 0x00; {Configure interrupt format: disable nested interrupts

IRQ0,1,2 level sensitive }

{ set PIO(23) as output }

ax0 = 0x80;

dm(PIODIR2) = ax0;

ax0 = 0x00;

dm(PIODATA2) = ax0;

{ set time to 0 }

ax0 = 0x0000;

dm(Time) = ax0;

call init_speed_est;

{ initialize the data capture functions: number of samples = 100

1 sample per 200 PWM cycles

1 sample per 20 ms

50 Hz sample rate

2s of total time }

call init_capture;

ar = 99;{199;}

call init_undersample;

{ initialize current magnitude PI controllers }

call init_ MCPI_Controller;

{ initialize fuzzy frequency controllers }

call init_ FUZZY_Controller;

{ initialize stator current PI controllers }

call init_SCPI_Controllers;

{ initialize the IR PowIRtrain module }

call init_IR;

{ initialize the DAC }

call init_DAC;

{ initialize the ADC }

call init_ADC;

{ initialize the encoder }

call init_enco;

{ initialize a counter to measure current offsets }

ax0 = 16;

dm(Count) = ax0;

ax0 = 0x0001;
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dm(firstFlag) = ax0;

ax0 = 0x0000;

dm(Ia_Offset) = ax0;

dm(Ib_Offset) = ax0;

dm(Ic_Offset) = ax0;

{ initialize phase angles }

ar = 0x0000;

dm(ThetaA) = ar;

ay0 = TwoPiOverThree;

ar = ar + ay0;

dm(ThetaB) = ar;

ar = ar + ay0;

dm(ThetaC) = ar;

{ initialize counters used for a real time clock subsystem }

ax0 = 0x0000;

dm(Count_01s) = ax0;

dm(Time) = ax0;

{ initialize the speed setpoint functions }

call init_speed;

call INIT_PWM; {Initialize PWM registers and ISRs }

IFC = 0x80; {Clear any pending IRQ2 interrupt }

ay0 = 0x200; {Enable IRQ2 interrupts }

ar = IMASK;

ar = ar OR ay0;

IMASK = ar;

call update_DAC;

MAINLOOP:

ax0 = dm(Time);

ay0 = dm(StepTime);

ar = ax0 - ay0;

if ne jump MAINLOOP;

ar = ax0 + 1; { increment time }

dm(Time) = ar;

{ enable capture }

call enable_A;

call enable_B;

call enable_C;

call enable_D;

{ do initial capture }

call record;

{ apply apply speed command request from

potentiometer}

ax0 = dm(Omega_set);

ay0 = dm(speedset);

ar = ax0 + ay0;

dm(Omega_set) = ar;
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jump MAINLOOP;

{ end of main loop }

PWMSYNC_ISR: { PWM Interrupt Service Routine }

imask = 0x20E;{unmask IRQ2, s/w, SPORT1 interrupts}

{ IRQ2 used for tacho or resolver pulses }

{ s/w, SPORT1 used for debugger }

ena sec_reg;

ax0 = dm(Count_0s);

ar = ax0 + 1;

ay0 = 1000;

af = ax0 - ay0;

if eq jump tic;

dm(Count_0s) = ar;

jump cont3;

tic: ax0 = 0x0000;

dm(Count_0s) = ax0;

ax0 = dm(Time); { increment Time }

ar = ax0 + 1;

dm(Time) = ar;

cont3: nop;

{ do nothing in the first PWMSYNC cycle since the

ADCs do not yet have valid values. }

ar = dm(firstFlag);

ar = pass ar;

if eq jump not1st;

ar = 0x0000;

dm(firstFlag) = ar;

jump end_PWM;

{ in PWMSYNC cycles 2 through 17 measure the current offsets. }

not1st: ar = dm(Count);

ar = pass ar;

if eq jump cont4;

call read_ADC;

call Calc_I_Offsets;

jump end_PWM;

cont4: call read_ADC;

dm(Vdc) = ar;

call Vdc_HANDLING;

{ stator current PI Controllers }

{ decide if it is time to execute the fuzzy and current magnitude

controllers }

ar = dm(Vel_count);

af = pass ar;

if le jump do_speed;

ar = ar - 1;

dm(Vel_count) = ar;

jump CHECK_Vabc;
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do_speed:

ar = VEL_COUNT_MAX-1;

dm(Vel_count) = ar;

{ speed encoder}

call enco;

call Fuzzy;

call Currentmc;

call SINCURRENT;

call Stcpi;

CHECK_Vabc:

SR1 = DM(Vac_as);

MR1 = DM(Vac_bs);

MR2 = DM(Vac_cs);

{ Calculate the three phase-voltages. }

DM(VrefA) = SR1;

DM(VrefB) = MR1;

DM(VrefC) = MR2;

JUMP V_CW_CCW;

{ Limit the voltages before calculating the duty-cycles }

CALL LIMIT_VrefABC;

{ Update PWM duty cycles based on calculated VrefA, B, C}

SR1 = DM(VrefA);

AY1 = DM(VrefB);

MY1 = DM(VrefC);

call WR_PWM_DUTY;

call calc_enco;

write_DAC(VrefA, DAC1)

write_DAC(VrefB, DAC2)

write_DAC(VrefC, DAC3)

write_DAC(Fslip, DAC4)

write_DAC(ImRef, DAC5)

write_DAC(Ias, DAC6)

write_DAC(Ibs, DAC7)

write_DAC(Ics, DAC8)

call record;

end_PWM:

dis sec_reg;

rti;

SINCURRENT:

ax0 = dm(ThetaA);

ay0 = delta * dm(Freq);

ar = ax0 + ay0;

dm(ThetaA) = ar;

ax0 = dm(ThetaB);

ay0 = delta * dm(Freq);
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ar = ax0 + ay0;

dm(ThetaB) = ar;

ax0 = dm(ThetaC);

ay0 = delta * dm(Freq);

ar = ax0 + ay0;

dm(ThetaC) = ar;

ax0 = dm(ThetaA);

M5 = 1;

L5 = 0;

call ADMC_SIN;

my1 = ar;

mr = 0;

mr = mr + my1 * dm(ImRef);

dm(IaRef) = mr;

ax0 = dm(ThetaB);

M5 = 1;

L5 = 0;

call ADMC_SIN;

my1 = ar;

mr = 0;

mr = mr + my1 * dm(ImRef);

dm(IbRef) = mr;

ax0 = dm(ThetaC);

M5 = 1;

L5 = 0;

call ADMC_SIN;

my1 = ar;

mr = 0;

mr = mr + my1 * dm(ImRef);

dm(IcRef) = mr;

{ Subroutine : record

Description : record variables of interest in buffers using the routines

defined in capture.dsp.}

record:

ar = dm(Fslip);

call capture_A;

ar = dm(ImRef);

call capture_B;

ar = dm(Enco);

call capture_C;

ar = dm(IasRef);

call capture_D;

rts;

{ Calc_I_Offsets - measure the three phase current offsets. This code is

only executed for the first 16 PWM cycles.}
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Calc_I_Offsets:

ay1 = ar;

{ store the measured values as the offsets }

ay0 = dm(Ia_offset); { load old Ia_offset }

SR = ASHIFT sr1 BY -4 (LO); { divide latest reading by 16 }

ar = sr0 + ay0; { keep running total }

dm(Ia_offset) = ar;

ay0 = dm(Ib_offset); { load old Ib_offset }

SR = ASHIFT sr1 BY -4 (LO); { divide latest reading by 16 }

ar = sr0 + ay0; { keep running total }

dm(Ib_offset) = ar;

ay0 = dm(Ic_offset); { load old Ic_offset }

SR = ASHIFT mr1 BY -4 (LO); { divide latest reading by 16 }

ar = sr0 + ay0; { keep running total }

dm(Ic_offset) = ar;

{ decrement the count value }

skip:ar = dm(Count);

ar = ar - 1;

dm(Count) = ar;

rts;

{ PWMTRIP - stops the PWM on the outputs.}

PWMTRIP_ISR:

imask = 0x0E; { unmask s/w, SPORT1 interrupts for debugger }

{ check the PWMTRIP input, if it has gone high restart the PWM block }

AR = DM(SYSSTAT);

AR = TSTBIT 0 of AR;

IF NE JUMP RESTART_PWM;

CNTR = H#3FF ;

DO Wait0 UNTIL CE; { wait 10us }

Wait0: NOP;

{checkthePWMTRIPinputagain,ifithasgonehighrestartthePWMblock}

AR = DM(SYSSTAT);

AR = TSTBIT 0 of AR;

IF NE JUMP RESTART_PWM;

DIS SEC_REG;

RTI;

{ After a shutdown - restart the PWM. }

RESTART_PWM:

CNTR = H#3FF ;

DO Wait20 UNTIL CE; { wait 10us }

Wait20: NOP;
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IFC = 0X80; { clear IRQ2 interupt }

AR = DM(IRQFLAG);

call INIT_PWM;

RTI; {Return From Interrupt}

CURRENT_HANDLING:

AX1 = MR1; { save Ics }

MY0 = Vi_Scale; { scaling factor }

{ Calculate Ias }

AY1 = DM(Ia_offset);

AR = SR1 - AY1; { SR1 = Ias_ADC }

MR = AR*MY0 (SS);

SR = ASHIFT MR1 BY 2 (HI);

DM(Ias) = sr1;

AR = -SR1;

AX0 = AR;

{ Calculate Ibs }

AY1 = DM(Ib_offset);

AR = SR1 - AY1; { SR1 = Ibs_ADC }

MR = AR*MY0 (SS);

SR = ASHIFT MR1 BY 2 (HI);

DM(Ibs) = sr1;

AR = -SR1;

AX0 = AR;

{ Calculate Ics }

AY1 = DM(Ic_offset);

AR = AX1 - AY1; { AX1 = Ics_ADC }

MR = AR*MY0 (SS);

SR = ASHIFT MR1 BY 2 (HI);

AY1 = SR1;

DM(Ics) = SR1;

{ Measure the bus-voltage for correction of the phase voltages. }

Vdc_HANDLING:

{ calculate Vdc(measured) / Vdc(max) }

MX0 = DM(Vdc_max_inv);

MY0 = DM(Vdc);

MR = MX0*MY0 (SS);

{ Vac_as = VrefA * Vdc(measured) / Vdc(max) }

MX0 = MR1;

MY0 = DM(VrefA);
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MR = MR1*MY0 (SS);

SR = ASHIFT MR1 BY 2 (HI);

DM(Vac_as) = SR1;

{ Vac_bs = VrefB * Vdc(measured) / Vdc(max) }

MY0 = DM(VrefB);

MR = MX0*MY0 (SS);

SR = ASHIFT MR1 BY 2 (HI);

DM(Vac_bs) = SR1;

{ Vac_cs = VrefC * Vdc(measured) / Vdc(max) }

MY0 = DM(VrefC);

MR = MX0*MY0 (SS);

SR = ASHIFT MR1 BY 2 (HI);

DM(Vac_cs) = SR1;

RTS;

{ Limiting of the Va,Vb and Vc, before calculating the duty cycle. }

LIMIT_VrefABC:

AY0 = Vmax; { limit value }

SR1 = DM(VrefA);

AR = ABS SR1;

AF = AR - AY0;

IF GT AR = PASS AY0;

AF = PASS SR1;

IF LT AR = -AR;

DM(VrefA) = AR;

SR1 = DM(VrefB);

AR = ABS SR1;

AF = AR - AY0;

IF GT AR = PASS AY0;

AF = PASS SR1;

IF LT AR = -AR;

DM(VrefB) = AR;

SR1 = DM(VrefC);

AR = ABS SR1;

AF = AR - AY0;

IF GT AR = PASS AY0;

AF = PASS SR1;

IF LT AR = -AR;

DM(VrefC) = AR;

RTS; {Return From Subroutine}

.ENDMOD;.ENDMOD;
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